
1The Bigger Picture

 More often than not we consider
animation in the world of computers as the direct
result of specific instructions that we lay upon
innocent, yet dumb objects. A character animator,
for instance, would likely define motion as a
series of interpolated angles and positions that a
mesh goes through with the help of its underlying
rig. Likewise, an FX artist whose job is to blow
things up might describe animation as the result
of often fine-tuned physical forces being applied
to a collection of objects that are just as careless in
regard to what’s happening to them as the
character mentioned earlier. The difference
between the two types of animation lies in its
governing authority: value interpolation and
physics respectively. However, there is another
type of motion that is not exclusively described by
neither value interpolation nor physics and that is
behavioural animation.
 Behavioural animation deals with
describing cognitive processes as “any behaviour
that can be attributed to mental activity, voluntary or
involuntary, that is reacting to the environment”
(Parent, 2012). Examples of cognitive processes
could be as simple as running towards a finish line
in a running contest or as complex as deciding
what shirt to wear on your first date. The more
complex processes are usually within the domain
of artificial intelligence (AI) and would be relevant
for instance in defining “thinking” non-playing
characters (NPCs) that respond in a believable way
to player interactions. That area of study,
however, falls outside the scope of the current
discussion.
 The other (“simple”) types of cognitive
processes are of much more interest when
dealing with aggregate behaviour, that is how a
collection of objects can be perceived as a single
entity by the way they interact with their
surrounding environment. Good examples of
such behaviour are particle systems, crowds and
flocking systems. There are a suite of conceptual
differences between the three, but perhaps the
most important one is the level of intelligence of
group members, ranging from none in the case of
particles, to potentially a lot in the case of crowds,
with flocking falling inbetween.

2Introducing the boids model

 Flocking is governed by relatively simple
behavioural rules that can generally be described
as reactions of flock members to outside stimuli.
Internal properties can also be present, but
usually they are there only to enhance outside
response. Intelligence thus takes the form of
avoiding obstacles and keeping formation, in
accordance to the rules laid out by the animator.
Physics still govern the motion of the system, but
with a reasoning layer added on top of it.
 Among the first to describe a set of rules
for modelling this sort of coordinated animal
motion (bird flocks, fish schools) inside a
computer and certainly the most recognizable
name in the field is Craig W. Reynolds, who in 1986
created the boids model - with “boids” being
chosen as an umbrella term for generic “bird-oid”
creatures. It is Reynolds’ primary research,
published in his paper “Flocks, Herds, and Schools -
A Distributed Behavioral Model” (Reynolds, 1987)
that forms the body of this discussion, as well as
the more encompassing “Steering Behaviors For
Autonomous Characters” (Reynolds, 1999), which
has some clearer examples of the author’s
concepts.
 It is a good time to mention at this point
that that the aim of the rest of the discussion is to
describe both the most important underlying
concepts of the boids model, as well as how they
were implemented as a plugin for Autodesk Maya
using the Maya API. It is not a complete overview
of all the techniques and concepts of flocking
behaviour, as many things were intentionally left
out for the purposes of fitting the project into the
allocated time frame, but it should nevertheless
form a good starting point for developing a more
complex and complete flocking system.

5 6 7

8 9

10

Separation Force

 Separation describes the vector a boid
should follow in order to avoid collision with its
neighbours. The force is computed by first adding
up the vectors going from the particle’s position to
each of the neighbours’ positions. Each vector is
normalized and scaled by a falloff (usually an
inverse square function) depending on how far
the neighbour is from the boid, with the closer
ones having much greater influence than ones
farther away. The result is averaged and negated
in order to point in the direction away from the
neighbours. Finally it is scaled by a user-controlled
coefficient that determines how strong the
separation force as a whole is. (Fig. 3)
 Note: even though the drawing to the left
doesn’t show it, the radius for the separation force
is usually smaller than on other forces, but the
repelling force applied is stronger, to make up for
the shorter distance.

Cohesion Force

 Cohesion keeps the boids together,
essentially being the opposite of Separation, but
with a bigger radius to prevent boids as much as
possible from going astray from their group. It is
calculated as a vector from the boid’s position to
the average position of its neighbours. Like in the
case of Separation, the result is multiplied by a
distance-based falloff, normalized to get a unit
direction vector and finally multiplied by a
user-controlled coefficient. (Fig. 4)

Alignment Force

 If for Separation and Cohesion forces we
cared about the position of the neighbours, in the
case of Alignment we are only concerned about
the velocity of nearby particles. What Alignment
force does is trying to keep the boid moving in the
same direction as its neighbours. Not only does
this help with cohesion, it also helps with
separation and more precisely with collisions,
because objects moving in the same direction are
less likely to collide.
 To calculate Alignment, we take the
average of the neighbours’ velocities and find the
difference between it and the boid’s velocity. The
result is normalized and, as always, multiplied by
an user-controlled coefficient. (Fig. 5)

3How we can help Maya and how Maya
can help us

 Before dissecting the boids model, we have
to decide how our development platform can
sustain what we want to do and whether what we
want to do is not already implemented. Maya does
have a complex particle system of its own, but it
does not feature standard flocking behaviours out
of the box. One would have to use particle
expressions that would likely be uncomfortable to
control via the interface, or perhaps make some
clever use of per-particle force fields which, while
more accessible, wouldn’t take away completely
the need of using particle expressions. The best
solution would therefore be a single custom node
that would quickly transform any particle system
into a flocking system. In return, connecting to
Maya’s inner dynamics system always comes with
multiple advantages, like not having to worry
about keeping track of all the particles or doing
motion integration over time.
 The node that deals with manipulating
particle objects is the force field node. Specifically
in the Maya API, it is the MPxFieldNode class that
all force fields inherit from. To keep it simple,
nodes of this type take in particles’ positions,
velocities and masses through an existing plug
InputData (Fig. 1) and through OutputForce
output an array of forces to be used by Maya’s
internal Nucleus solver to update the particle
system. Our job is then to compute the “flocking
forces” inside this node.

Figure 1: Connections between the particle object
and the custom force field node (flock_node)

4Boids model basics

 Now that we established where our
calculations will take place, let’s start analyzing the
boids model. First and foremost, it is important to
determine what a boids “sees”. If we think about a
flock or a herd, any single animal only sees and
cares about its immediate neighbours. Even if we
think it might see all the way to the other side of
the flock, it still wouldn’t matter, since only its
neighbours would actually affect its movement. A
good analogy is thinking about being in a crowded
place. Even if you see the people at the end of the
hall, it’s people in your immediate vicinity that
directly affect your movement. And also you might
not care about people behind you if you’re moving
away from them and you might not care about
more than let’s say 3 people at a time (Fig. 2).
 In spite of that, searching through a
particle system still has a time complexity of O(n2),
because each boid has to consider all other boids
even when only looking for its neighbours. There
are methods to decrease search time by relying
on space partitioning, but they will not be covered
here.

Figure 2: Neighbour search pattern

A looks for neighbours within radius r and FOV θ:

-> A1, A2, A3 meet all the neighbour criteria
-> A4 meets all criteria, but is excluded because A
already has 3 neighbours and A4 is the farthest

-> A5 is excluded for being outside the FOV
-> A6, A7 are excluded for being too far

A

A1

A2

A3

A4

A5

A6

A7

r

θ = 270º

Figure 3: Separation force

vec_sum = Σ (neighbour_pos - boid_pos).normalize() * falloff
separationF = -vec_sum * separation_scalar

Figure 4: Cohesion force

average_pos = average of neighbour’s positions * falloff
cohesionF = (average_pos-boid_pos).normalize() * cohesion_scalar

Figure 5: Alignment force

average_vel = average vector of neighbours’ velocities
alignF = (average_vel - boid_vel) .normalize()* align_scalar

Seek/Flee Forces

 Seek is the pursuit of a static target,
whereas Flee is its inverse. Then all a boid needs
to do is to speed towards the target’s position
(obtained by extracting the translation vector
from the target’s transformation matrix) or flee
from it if it’s within the target’s radius and if the
target’s weight parameter is not 0. (Fig. 7)

Pursuit/Evasion Forces

 These are really similar to Seek/Flee,
however they consider the target‘s position in the
future. That position cannot be known precisely,
but can be assumed based on the target’s velocity
at the current frame. A simple forward integration
is performed to approximate a position at some
time in the future (shorter time if target is close,
longer if target is far), then that value is used to
calculate the Pursuit/Evasion forces. (Fig. 8)

Arrival Force

 Arrival force is a negative force to velocity
and only gets applied when the boid is within the
target’s arrival distance. It effectively shrinks
down velocity to zero as the boid gets closer to the
target.

Figure 7: Seek and Flee (Reynolds, 1999)

Figure 8: Pursuit and Evasion (Reynolds, 1999)

The collision avoidance process is composed of
the following steps (illustrated in Fig. 10):

1. toObstacle = positionobstacle - positionboid

Vector going from the boid’s bounding box centre
tothe obstacle’s bounding box centre.

2. vector up = v x toObstacle

Vector perpendicular to both v and toObstacle.

3. side = v x up

Vector in the same plane as v and toObstacle.

4. Projside.normal()toObstacle

When we project vector toObstacle onto the unit
vector side, we get the length of the vector toObstacle
projected on the plane defined by up and side, which
is the plane perpendicular to the boid’s velocity. This
is the length we need for the obstacle avoidance.

5. Projv.normal()toObstacle

When we project the vector toObstacle onto the unit
vector v, we get the length of the vector toObstacle
projected along vector v. In other words, we get the
distance to the collision object in v, which helps us
determine which object is the first to collide if there
are multiple objects colliding.

As soon as this data is gathered, we can check
whether the length of the side vector is greater than
the radius of the obstacle bounding sphere plus the
the radius of the boid sphere, in order to determine
if collision is prone to happen. And if so, we simply
apply acceleration as the direction and magnitude
that would takes us out of the collision course the
fastest:

avoidanceForce = -(side.normal()) * maxAccel

where maxAccel is a scalar that caps acceleration.
Even though we’ve introduced it only now, it
operates as a global limiter as well, preventing
boids from accelerating in an unrealistically fast
way. It is often coupled with maxSpeed.

Beyond the bare minimum

 With Separation, Cohesion and Alignment
we already have a dynamic system displaying
flocking behaviour. Tuning search radius, vision
angle (FOV), the maximum number of neighbours
and force strength coefficients will have an
immediate effect on the shape of the flocking
system, as its members will adapt to the new
settings. And while it’s nothing to write home
about, this is nevertheless a crude representaion
of flocking behaviour.
 In order to make it more believable, we
need to add things to it. And what is immediately
noticeable at this point is that the flock is
stationary. Fortunately, we have a couple of
options to fix this problem: to add Seek, Flee
and/or Pursuit forces. But before be can do that,
we need an object to seek, pursuit or to flee from.
The only valid way to get any kind of information
into a Maya DG node is through an input plug. We
would call the plug Target and we would need to
know a few extra things about it beside its
position: its weight (a value from 0 to 1 describing
how much it attracts the boids), its arrival
distance (how far from it do the boids start to slow
down in order to intercept it) and its radius (how
far does the attraction of the target extend from
its center). Knowing these, we can create a
compound plug on the field node with all the
required inputs. (Fig. 6)

Figure 6: Target inputs on the flock node.
Note: Target is a plug array, taking in as many targets

as necessary.

Obstacle avoidance

 Obstacle avoidance gives boids the ability
to navigate through an environment without
colliding with set obstacles. It is important to make
a distinction between collision detection and
collision avoidance, the former detecting the very
thing that the latter tries to prevent. Reynolds’
proposed method, while simple in concept, does
make sense in the real world as well, especially
when thinking about large, convex obstacles,
which a flying object would likely avoid by a large
margin. His method relies thus on considering
both the boid and the obstacle as their respective
bounding spheres.
 The obstacle avoidance behaviour tries to
maintain a cylindrical volume of arbitrary length in
front of the boid (therefore in the direction of
velocity) free of intersections with any obstacle
bounding sphere. The radius of the bounding
sphere of the obstacle is calculated from the input
bounding box size parameter, while the position
of the obstacle is retrieved prom the passed in
matrix. (Fig. 9)

Figure 9: Obstacle inputs on the flock node.
Note: Obstacle is a plug array, taking in as many obstacles

as necessary.

radiusobstacle

Obstacle
Bounding
Sphere

Obstacle separation distance

v

toObstacle

up (v x toObstacle)

side
(v x up)

-side

ProjsidetoObstacle

ProjvtoObstacle

Figure 10: Obstacle avoidance calculation vectors

A

A

A
A

A

A

radiusobstacle

Obstacle

Obstacle
Bounding
Sphere

Arrival Distance

Target

Cylindrical volume along velocity vector Incoming
Collision

Obstacle separation distance

Figure 11: Possible trajectory of a boid en-route to its target,
avoiding collision with an object’s bounding sphere.

Summing up forces

 We now have enough forces acting on our
boids to get some interesting results. Only one
thing left to do and that is to sum all forces, make
sure to clamp very high values and send it off to
Maya to integrate everything over time.

Other implementation details

 At the time of writing, all the discussed
behaviours with the exception of pursuit and
evasion have been implemented. While beneficial
for the flocking accuracy, they are actually
variations of Seek/Flee, which have been
implemented. The node was written in Python and
tested with Maya 2016. Time constraints made it
impossible to add an user interface, but all the
parameters can be controlled via the Channel Box
/ Attribute Editor. Future development would not
only see a more complete set of behaviours
implemented, but also a translation to C++, which
would make for a dramatic performance increase
when dealing with a higher number of boids.

Further research

 The possibilities with flocking systems are
far beyond what has been discussed and
implemented here. Reynolds himself lists many
other types of steering and cognitive behaviours
that would have been extremely interesting to
study and implement: path following, orientation,
leader following, wander, flow following etc. And
of course, over the years many developers
implemented and extended these behaviours, a
simple Google search providing too many
examples to mention. Although in the context
closely relevant to this poster, a prime example
would be techtoast.co.uk, a company who offers
a commercial flocking system plugin for Maya.

Figure 13: Obstacle avoidance tests

Figure 12: Interactive Target Following

Flocking behaviour with Maya and the Maya API
Liviu-George Bitiușcă MSc Computer Animation and Visual Effects

Bournemouth University

