
1The Bigger Picture

 More often than not we consider 
animation in the world of computers as the direct 
result of specific instructions that we lay upon 
innocent, yet dumb objects. A character animator, 
for instance, would likely  define motion as a 
series of interpolated angles and positions that a 
mesh goes through with the help of its underlying 
rig. Likewise, an FX artist whose job is to blow 
things up might describe animation as the result 
of often fine-tuned physical forces being applied 
to a collection of objects that are just as careless in 
regard to what’s happening to them as the 
character mentioned earlier. The difference 
between the two types of animation lies in its 
governing authority: value interpolation and 
physics respectively. However, there is another 
type of motion that is not exclusively described by 
neither value interpolation nor physics and that is 
behavioural animation.
 Behavioural animation deals with 
describing cognitive processes as “any behaviour 
that can be attributed to mental activity, voluntary or 
involuntary, that is reacting to the environment” 
(Parent, 2012). Examples of cognitive processes 
could be as simple as running towards a finish line 
in a running contest or as complex as deciding 
what shirt to wear on your first date.  The more 
complex processes are usually within the domain 
of artificial intelligence (AI) and would be relevant 
for instance in defining “thinking” non-playing 
characters (NPCs) that respond in a believable way 
to player interactions. That area of study, 
however, falls outside the scope of the current 
discussion.
 The other (“simple”) types of cognitive 
processes are of much more interest when 
dealing with aggregate behaviour, that is how a 
collection of objects can be perceived as a single 
entity by the way they interact with their 
surrounding environment. Good examples of 
such behaviour are particle systems, crowds and 
flocking systems. There are a suite of conceptual 
differences between the three, but perhaps the 
most important one is the level of intelligence of 
group members, ranging from none in the case of 
particles, to potentially a lot in the case of crowds, 
with flocking falling inbetween.

2Introducing the boids model

 Flocking is governed by  relatively simple 
behavioural rules that can generally be described 
as reactions of flock members to outside stimuli. 
Internal properties can also be present, but 
usually they are there only to enhance outside 
response. Intelligence thus takes the form of 
avoiding obstacles and keeping formation, in 
accordance to the rules laid out by the animator. 
Physics still govern the motion of the system, but 
with a reasoning layer added on top of it.
 Among the first to describe a set of rules 
for modelling this sort of coordinated animal 
motion (bird flocks, fish schools) inside a 
computer  and certainly the most recognizable 
name in the field is Craig W. Reynolds, who in 1986 
created the boids model -  with “boids” being 
chosen as an umbrella term for generic “bird-oid” 
creatures. It is Reynolds’ primary research, 
published in his paper “Flocks, Herds, and Schools - 
A  Distributed Behavioral Model” (Reynolds, 1987) 
that forms the body of this discussion, as well as 
the more encompassing “Steering Behaviors For 
Autonomous Characters” (Reynolds, 1999), which 
has some clearer examples of the author’s 
concepts.
 It is a good time to mention at this point 
that that the aim of the rest of the discussion is to 
describe both the most important underlying 
concepts of the boids model, as well as how they 
were implemented as a plugin for Autodesk Maya 
using the Maya API. It is not a complete overview 
of all the techniques and concepts of flocking 
behaviour, as many things were intentionally left 
out for the purposes of fitting the project into the 
allocated time frame, but it should nevertheless 
form a good starting point for developing a more 
complex and complete flocking system.
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Separation Force

 Separation describes the vector a boid 
should follow in order to avoid collision with its 
neighbours. The force is computed by first adding 
up the vectors going from the particle’s position to 
each of the neighbours’ positions. Each vector is 
normalized and scaled by a falloff (usually an 
inverse square function) depending on how far 
the neighbour is from the boid, with the closer 
ones having much greater influence than ones 
farther away. The result is averaged and negated 
in order to point in the direction away from the 
neighbours. Finally it is scaled by a user-controlled 
coefficient that determines how strong the 
separation force as a whole is. (Fig. 3)
 Note: even though the drawing to the left 
doesn’t show it, the radius for the separation force 
is usually smaller than on other forces, but the 
repelling force applied is stronger, to make up for 
the shorter distance.

Cohesion Force

 Cohesion keeps the boids together, 
essentially being the opposite of Separation, but 
with a bigger radius to prevent boids as much as 
possible from going astray from their group. It is 
calculated as a vector from the boid’s position to 
the average position of its neighbours. Like in the 
case of Separation, the result is multiplied by a 
distance-based falloff, normalized to get a unit 
direction vector and finally multiplied by a 
user-controlled coefficient. (Fig. 4)

Alignment Force

 If for Separation and Cohesion forces we 
cared about the position of the neighbours, in the 
case of Alignment we are only concerned about 
the velocity of nearby particles. What Alignment 
force does is trying to keep the boid moving in the 
same direction as its neighbours. Not only does 
this help with cohesion, it also helps with 
separation and more precisely with collisions, 
because objects moving in the same direction are 
less likely to collide.
 To calculate Alignment, we take the 
average of the neighbours’ velocities and find the 
difference between it and the boid’s velocity. The 
result is normalized and, as always, multiplied by 
an user-controlled coefficient. (Fig. 5)

3How we can help Maya and how Maya 
can help us

 Before dissecting the boids model, we have 
to decide how our development platform can 
sustain what we want to do and whether what we 
want to do is not already implemented. Maya does 
have a complex particle system of its own, but it 
does not feature standard flocking behaviours out 
of the box. One would have to use particle 
expressions that would likely be uncomfortable to 
control via the interface, or perhaps make some 
clever use of per-particle force fields which, while 
more accessible, wouldn’t take away completely 
the need of using particle expressions. The best 
solution would therefore be a  single custom node 
that would quickly transform any particle system 
into a flocking system. In return, connecting to 
Maya’s inner dynamics system always comes with 
multiple advantages, like not having to worry 
about keeping track of all the particles or doing 
motion integration over time.
 The node that deals with manipulating 
particle objects is the force field node. Specifically 
in the Maya API, it is the MPxFieldNode class that 
all force fields inherit from. To keep it simple, 
nodes of this type take in particles’ positions, 
velocities and masses through an existing plug 
InputData (Fig. 1) and through OutputForce 
output an array of forces to be used by Maya’s 
internal Nucleus solver to update the particle 
system. Our job is then to compute the “flocking 
forces” inside this node.

Figure 1: Connections between the particle object
and the custom force field node (flock_node)

4Boids model basics

 Now that we established where our 
calculations will take place, let’s start analyzing the 
boids model. First and foremost, it is important to 
determine what a boids “sees”. If we think about a 
flock or a herd, any single animal only sees and 
cares about its immediate neighbours. Even if we 
think it might see all the way to the other side of 
the flock, it still wouldn’t matter, since only its 
neighbours would actually affect its movement. A 
good analogy is thinking about being in a crowded 
place. Even if you see the people at the end of the 
hall, it’s people in your immediate vicinity that 
directly affect your movement. And also you might 
not care about people behind you if you’re moving 
away from them and you might not care about 
more than let’s say 3 people at a time (Fig. 2).
 In spite of that, searching through a 
particle system still has a time complexity of O(n2), 
because each boid has to consider all other boids 
even when only looking for its neighbours. There 
are methods to decrease search time by relying 
on space partitioning, but they will not be covered 
here.

Figure 2: Neighbour search pattern
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Figure 3: Separation force

vec_sum = Σ (neighbour_pos - boid_pos).normalize() * falloff
separationF = -vec_sum * separation_scalar

Figure 4: Cohesion force

average_pos = average of neighbour’s positions * falloff 
cohesionF = (average_pos-boid_pos).normalize() * cohesion_scalar

Figure 5: Alignment force

average_vel = average vector of neighbours’ velocities
alignF = (average_vel - boid_vel) .normalize()* align_scalar

Seek/Flee Forces

 Seek is the pursuit of a static target, 
whereas Flee is its inverse. Then all a boid needs 
to do is to speed towards the target’s position 
(obtained by extracting the translation vector 
from the target’s transformation matrix) or flee 
from it if it’s within the target’s radius and if the 
target’s weight parameter is not 0. (Fig. 7)

Pursuit/Evasion Forces

 These are really similar to Seek/Flee, 
however they consider the target‘s position in the 
future. That position cannot be known precisely, 
but can be assumed based on the target’s velocity 
at the current frame. A simple forward integration 
is performed to approximate a position at some 
time in the future (shorter time if target is close, 
longer if target is far), then that value is used to 
calculate the Pursuit/Evasion forces. (Fig. 8)

Arrival Force

 Arrival force is a negative force to velocity 
and only gets applied when the boid is within the 
target’s arrival distance. It effectively shrinks 
down velocity to zero as the boid gets closer to the 
target.

Figure 7: Seek and Flee (Reynolds, 1999)

Figure 8: Pursuit and Evasion (Reynolds, 1999)

The collision avoidance process is composed of 
the following steps (illustrated in Fig. 10):

1. toObstacle = positionobstacle - positionboid 

Vector going from the boid’s bounding box centre 
tothe obstacle’s bounding box centre.

2. vector up = v x toObstacle

Vector perpendicular to both v and toObstacle.

3. side = v x up

Vector in the same plane as v and toObstacle.

4. Projside.normal()toObstacle

When we project vector toObstacle onto the unit 
vector side, we get the length of the vector toObstacle 
projected on the plane defined by up and side, which 
is the plane perpendicular to the boid’s velocity. This 
is the length we need for the obstacle avoidance.

5. Projv.normal()toObstacle

When we project the vector toObstacle onto the unit 
vector v, we get the length of the vector toObstacle 
projected along vector v. In other words, we get the 
distance to the collision object in v, which helps us 
determine which object is the first to collide if there 
are multiple objects colliding.

As soon as this data is gathered, we can check 
whether the length of the side vector is greater than 
the radius of the obstacle bounding sphere plus the 
the radius of the boid sphere, in order to determine 
if collision is prone to happen. And if so, we simply 
apply acceleration as the direction and magnitude 
that would takes us out of the collision course the 
fastest:

avoidanceForce = -(side.normal()) * maxAccel

where maxAccel is a scalar that caps acceleration. 
Even though we’ve introduced it only now, it 
operates as a global limiter as well, preventing 
boids from accelerating in an unrealistically fast 
way. It is often coupled with maxSpeed.

Beyond the bare minimum

 With Separation, Cohesion and Alignment 
we already have a dynamic system displaying 
flocking behaviour. Tuning search radius, vision 
angle (FOV), the maximum number of neighbours 
and force strength coefficients will have an 
immediate effect on the shape of the flocking 
system, as its  members will adapt to the new 
settings. And while it’s nothing to write home 
about, this is nevertheless a crude representaion 
of flocking behaviour.
 In order to make it more believable, we 
need to add things to it. And what is immediately 
noticeable at this point is that the flock is 
stationary. Fortunately, we have a couple of 
options to fix this problem: to add Seek, Flee 
and/or Pursuit forces. But before be can do that, 
we need an object to seek, pursuit or to flee from. 
The only  valid way to get any kind of information 
into a Maya DG node is through an input plug. We 
would call the plug Target and we would need to 
know a few extra things about it beside its 
position: its weight (a value from 0 to 1 describing 
how much it attracts the boids), its arrival 
distance (how far from it do the boids start to slow 
down in order to intercept it) and its radius (how 
far does the attraction of the target extend from 
its center). Knowing these, we can create a 
compound plug on the field node with all the 
required inputs. (Fig. 6)

Figure 6: Target inputs on the flock node.
Note: Target is a plug array, taking in as many targets

as necessary.

Obstacle avoidance

 Obstacle avoidance gives boids the ability 
to navigate through an environment without 
colliding with set obstacles. It is important to make 
a distinction between collision detection and 
collision avoidance, the former detecting the very 
thing that the latter tries to prevent. Reynolds’ 
proposed method, while simple in concept, does 
make sense in the real world as well, especially 
when thinking about large, convex obstacles, 
which a flying object would likely avoid by a large 
margin. His method relies thus on considering 
both the boid and the obstacle as their respective 
bounding spheres.
 The obstacle avoidance behaviour tries to 
maintain a cylindrical volume of arbitrary length in 
front of the boid (therefore in the direction of 
velocity) free of intersections with any obstacle 
bounding sphere. The radius of the bounding 
sphere of the obstacle is calculated from the input 
bounding box size parameter, while the position 
of the obstacle is retrieved prom the passed in 
matrix. (Fig. 9)

Figure 9: Obstacle inputs on the flock node.
Note: Obstacle is a plug array, taking in as many obstacles

as necessary.
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Figure 10: Obstacle avoidance calculation vectors
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Figure 11: Possible trajectory of a boid en-route to its target,
avoiding collision with an object’s bounding sphere.

Summing up forces

 We now have enough forces acting on our 
boids to get some interesting results. Only one 
thing left to do and that is to sum all forces, make 
sure to clamp very high values and send it off to 
Maya to integrate everything over time.

Other implementation details

 At the time of writing, all the discussed 
behaviours with the  exception of pursuit and 
evasion have been implemented. While beneficial 
for the flocking accuracy, they are actually 
variations of Seek/Flee, which have been 
implemented. The node was written in Python and 
tested with Maya 2016. Time constraints made it 
impossible to add an user interface, but all the 
parameters can be controlled via the Channel Box 
/ Attribute Editor.  Future development would not 
only see a more complete set of behaviours 
implemented, but also a translation to C++, which 
would make for a dramatic performance increase 
when dealing with a higher number of boids.

Further research

 The possibilities with flocking systems are 
far beyond what has been discussed and 
implemented here. Reynolds himself lists many 
other types of steering and cognitive behaviours 
that would have been extremely interesting to 
study and implement: path following, orientation, 
leader following, wander, flow following etc. And 
of course, over the years many developers 
implemented and extended these behaviours, a 
simple Google search providing too many 
examples to mention. Although in the context 
closely relevant to this poster, a prime example 
would be techtoast.co.uk, a company who offers 
a commercial flocking system plugin for Maya.

Figure 13: Obstacle avoidance tests

Figure 12: Interactive Target Following
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