

Eulerian Fluid Simulator
Liviu-George Bitiușcă

MSc Computer Animation & Visual Effects

Bournemouth University
August 2016

Contents

Table of contents………………………………………………………………………………………………....……i
Abstract………………………………………………………………………………..………………………………….ii
1 Introduction…….1

1.1 Motivation…………………………………………………………………………………………………1
1.2 Project goals……………………………………………...………………………………………………1

2 Related work……………………………………………...…………………………………………………………2
3 Governing equations ..………………..………………………...………………………………………………5
 3.1 The Momentum Equation…………...……………...………………………………………………5
 3.2 The Material Derivative ...…………………………..………………………………………………9
 3.3 Fluid incompressibility……………………..………..……………………………………………11

3.4 Boundary conditions…………..…………………………..……………………………………….12
4 Solving the equations…………..………………………………………….……………………………….…13
 4.1 Splitting the fluid equations for numerical simulation…………………….…………13
 4.2 The MAC grid…………..……………………………………...…………………………….…………14
 4.3 Advection…………..……………………………………………...…………………………………….16
 4.4 Velocity extrapolation and boundary conditions………………………………….……18
 4.5 The pressure gradient…………………………………………………..…………………….……19
 4.6 The discrete divergence……………………………………………………………..……….……20
 4.7 The pressure equations…………………………………………………………...…………….…21
 4.8 Finding and applying pressure…………………………………...………………………….…22
5 Implementation……………………………………………………………………………………………….…24

5.1 Software architecture and class analysis………………………….…………………..……24
 5.2 Programming challenges………………………………………………………………….………26
 5.3 Other implementation details…………………………………………….…………………….26

5.4 UML diagram………………………………………………………………………………….………..27
6 Results………..….28
 6.1 Functionality and performance………………………………………………………..……….28

6.2 Limitations and future work…………………………………………………………………….28
7 Conclusion………..…………………………………………………………………………………………………29
Bibliography……..30

Abstract

This thesis describes the implementation of an Eulerian fluid simulator. A short
overview and comparison of computational fluid dynamics (CFD) techniques for the
entertainment industry is given, before proceeding to describe and detail the chosen
technique for this project, from underlying mathematical concepts to high-level
programming algorithms using C++ and OpenGL. The resulting simulator is analysed in
terms of internal software architecture, performance, issues encountered during
development and desired future improvements.

Keywords: Computational Fluid Dynamics, CFD, Fluid simulation, Grid-based, Eulerian
solver, Navier-Stokes equations.

1 Introduction

1.1 Motivation

It is hard to understate the impact that Computational Fluid Dynamics (CFD) has within
the greater domain of applied science and engineering -most people know about or at
least expect physical phenomena being simulated in various fields of science-, but it’s
easy to overlook its importance and involvement in computer animation, where it
usually has a supporting role. After all, the general public will always consider computer
animation to be first and foremost a form of artistic expression rather than a
demonstration of technical prowess and to some extent, that is completely justifiable:
computer animation is science servicing art and not the other way around.

Fluid simulations are indispensable to the visual entertainment industry, as they allow
creating physical phenomena (e.g. smoke, water, lava or any other flowing material)
that would be impractical or downright impossible to produce through any other
means. A great deal of effort has been made, especially in the last 20 years, in order to
achieve ever-increasing levels of realism and results have often been impressive, to the
point where simulation can be indistinguishable from reality. That being said, it is still a
very much open area of research, even when only judging by recent SIGGRAPH
presentations, with new methods and techniques being constantly invented or refined.

1.2 Project goals

From its earliest proposal stage, tackling this subject aimed first and foremost at a solid
understanding of the underlying mathematical model employed in Eulerian fluid
modelling, but also at solving a reasonably challenging software engineering problem.
Considerable thought has been put not only in understanding how a fluid simulator’s
parts work together, but also into how to build and connect them in a manner that is as
efficient and as simple as possible.

Speaking about simple, a word is in order about the desired extent of development (to
be discussed in more detail in chapter 5): while having a feature-rich project is certainly
something to aspire to, the most simple version of an Eulerian simulator proved very
early on to be a difficult enough task for the author to justify setting that as the intended
goal, with plans for future improvements and additions. There are no technical
innovations brought forward, but rather tried-and-tested concepts, as described in
research papers and books, are implemented. In that regard, the project can be thought
of as an exercise in fully replicating already existing technology. The primary source of
information during development was “Fluid Simulation for Computer Graphics (Second

Edition)” [Bridson 2015], from which the majority of important algorithms and general
structure of the simulator have been inspired.

2 Related work

Computational Fluid Dynamics (CFD) is a branch of fluid mechanics (the other one
being fluid statics) that employs numerical analysis and other mathematical algorithms
to resolve fluid flows. Historically, its purpose lay with helping to solve various
engineering problems, from biology to astrophysics to any other field that required
understanding and visualization of how fluid changes under certain conditions and how
it affected objects which it came in contact with. Historically, CFD techniques only
pertained to engineering applications, primarily in the aerospace industry. However,
rapid advancements in computer technology towards the end of the last century led to
CFD eventually being used in computer animation.

Widely considered as the foremost figure in the development of CFD as a discipline and
referenced by virtually all researchers of fluid dynamics for computer animation, is
Francis H. Harlow, an American theoretical physicist who was the first one to use a
computer to model fluid flow, at Los Angeles National Laboratory. As leader of the T3
dynamics group from 1957 to the late 1960s, he pioneered many techniques, some of
them still in direct or indirect use today. Among them the PIC (Particle-In-Cell) method
[Harlow et al. 1958], which three decades later would form the basis of FLIP (Fluid
Implicit Particle) method [Brackbill and Rupel 1986], arguably the most widely used
simulation method today and the MAC (Marker-And-Cell) method [Harlow et al. 1965],
a simple, yet effective approach of tracking the fluid motion with marker particles –
something that the current project uses as well.

These ideas made their way into the world of computer graphics particularly through
the seminal work of Stam and Fiume [1993, 1995] for gaseous phenomena and Foster
and Metaxas [1996] for liquid phenomena. The latter two’s work in particular marked
the first time complex liquid phenomena were efficiently animated using physically-
based methods, with realism being provided through a finite difference approximation
of the incompressible Navier-Stokes equations. From this moment on, preoccupation for
CFD increased tremendously in the computer graphics community and by the end of the
decade a large number of films started to utilize to their net advantage this new
approach for creating believable dynamic effects.

Another significant contribution to the development of fluid simulation for computer
animation around this time was that of Jos Stam, with his paper “Stable Fluids” [1999],

in which an unconditionally stable solver of the Navier-Stokes equations was presented,
based on a semi-Lagrangian advection scheme (to be detailed in the next chapter) and
implicit differentiation of viscosity, as opposed to the explicit and thus prone to
numerical instability, method used earlier by Foster and Metaxas. Stam’s innovations
made a reasonable compromise between speed and accuracy, essentially proving that
fluid simulations could be efficient enough to run even on consumer-grade hardware.

The early 2000s brought such accelerated development of fluid dynamics in computer
graphics that films (and later, games) which didn’t use this new technology quickly
became the exception rather than the rule. Interactive fluid solvers made their way to
commercial 3D applications (e.g. Maya Fluid Effects, a solver for phenomena such as
smoke, fire, clouds or explosions was included in the software starting with Maya
version 4.5 in 2003), thus making it easier than ever before for the technology to
expand into all areas of computer graphics. A close inspection of the nature of special
effects used by films in the early 2000s leads to the conclusion that it was precisely at
this time that practical dynamic effects were irrevocably superseded by their digital
counterparts.

A pivotal innovation in the new millennium was the introduction of the level set -a type
of implicit surface that superseded the height field in accurately describing a liquid free
surface [Foster and Fedkiw 2001; Osher and Fedkiw 2001], and a modification of it, the
hybrid particle level set [Enright et al. 2002] -a mix between the original particle based
method and the initial level set concept. Also, the late 2000s saw FLIP becoming an
increasingly prevalent method, due to its reduced numerical dissipation when
compared to pure Eulerian methods, as well as due to its good preservation of fine
detail around the surface of the fluid. All high-end fluid solvers in active development
today (Bifrost (ex-Naiad), Realflow, Houdini etc.) currently use FLIP in one form or
another. Notable research work on FLIP has been done by Zhu and Bridson [2005] and
very recently by Ferstl et al. [2016].

Apart from grid-based (Eulerian) methods previously described (technically some of
them are hybrid methods, but they still rely on a spatial grid), there are also pure
particle-based (Lagrangian) methods. This family of methods does not rely on spatial
discretization, rather stores all the required information to perform the simulation on
the particles. Their main advantage over grid based methods is the unbounded domain
of simulation and decreased memory consumption, but coming at the cost of increased
computation time (by comparison with FLIP, SPH requires 7 to 20 time steps or more
each frame to stabilize [SideFX Software 2016]) and inability to accurately describe
large bodies of water. By far the most popular of particle-based method is Smoothed
Particle Hydrodynamics, or SPH, introduced in 1977 by Gingold and Monaghan for
astrophysics applications and proposed as a viable solution for real-time and interactive

applications by Müller et al. [2003]. The innovation of this system is that particles have
a “smoothing length” over which properties are interpolated by a kernel function. This
means properties of a particle (like pressure or temperature) can influence and be
influenced by those of neighbouring particles.

3 Governing equations

Most fluid flow of interest to computer animation is governed by the incompressible
Navier-Stokes equations, which are a set of partial differential equations:

1u u u p g u

t
ν

ρ
∂

+ ⋅∇ + ∇ = + ∇⋅∇
∂

,

 0u∇⋅ =

.

where u is the velocity of the fluid (, ,)u u v w=

, the Greek letter ρ is the density of the
fluid, p is the pressure that the fluid exerts on anything, g is the sum of all external
forces acting on the fluid (e.g. gravity) and the Greek letter ν is the kinematic
viscosity, a measure of how much the fluid resists deformation or how easy it conforms to
its container.
Now is a good time to mention that for many types of fluid, the viscosity term is not
needed, so it is simply dropped from the equation. Dense fluids like honey or lava are
highly dependent on viscosity, but for the majority of situations, viscosity does not play
an important role. Water or air, for instance, have hardly any viscosity and are good
examples of inviscid fluids (even though in real life they are not ideal inviscid fluids,
their viscosity is low enough to be negligible in computer animation). In any case, due to
the numerical methods used in approximating the solution to the fluid equations, some
viscosity is unavoidably added into the simulation even when the viscosity term is
dropped. The Navier-Stokes equations which are missing the viscosity term are called
the Euler equations and they are in fact the ones that used in the current project:

1u u u p g

t ρ
∂

+ ⋅∇ + ∇ =
∂

, (1.1)

 0u∇⋅ =
 . (1.2)

3.1 The Momentum Equation

Equation (1.1) is called the momentum equation and in the world of fluid dynamics it
is the equivalent of Newton’s Second Law of motion: F ma=

 . What it describes then is
how the fluid accelerates due to forces (internal and external) acting on it. It might not
be immediately apparent, but the terms in the Euler equations exactly mirror those in
Newton’s Second Law, as it’s about to be made a little more clear below.

To help with intuition, a particle-driven fluid simulation is considered, where each
particle represents a small blob of fluid with a mass m, a volume V and a velocity u . As

Newton’s Second Law states, the force F

on the particle is equal to its mass m times
acceleration a :

 F ma=

 (1.3)

Acceleration is not known, but velocity on the particle is indeed known, and since
acceleration is the derivative of velocity, the equation can be rewritten as:

DuF m
Dt

=

 (1.4)

where
Du
Dt

 is the notation used for the Material Derivative (to be dissected soon), but

which for now can be safely thought of as just a standard derivative. The next step is to
consider what forces are acting on the particle. Naturally the first one to be considered
is the force of gravity (important to remember this is the force of gravity, not to be
confused with simple acceleration due to gravity, which does not involve mass):

 gravityF mg=

Gravity is thus an external force, acting in equal amounts over each and every particle of
the fluid and requires no further explanation. The somewhat more complex forces are
those generated internally by the fluid on itself or, in other words, the forces which
particles exert on their surrounding particles. There are two such forces: viscosity and
pressure, but since viscosity has been previously dropped from the equation, only
pressure is of importance. Thinking about it conceptually, fluid flows from high
pressure areas to low pressure areas. To determine the force of pressure at a specific
particle position, given that pressure is a spatial set of scalar values (a.k.a. a scalar field),
the gradient of pressure, p∇ must be taken, resulting in a vector pointing in the
direction of the “steepest ascent”, which is then negated, p−∇ , to point away from the
region with high-pressure towards the region with low-pressure. To be perfectly clear,

p∇ is just a collection of a scalar function’s partial derivatives into a vector:

/ /
/ /
/ /

x p x
p y p p y

z p z

∂ ∂ ∂ ∂
 −∇ = − ∂ ∂ ⋅ = − ∂ ∂
 ∂ ∂ ∂ ∂

To get the pressure force, the vector above then needs to be integrated over the volume
of the particle blob, but as a simple approximation it can just be multiplied by V instead:

 pressureF V p= − ∇

 At this stage it is still a bit unclear what the pressure’s role will be in the actual
simulation, but understanding the core idea that high pressure areas push fluid away
according to the direction pointed to by the negative gradient of pressure is extremely
important (more on this is section 4.5). Now, if equation (1.4) is rewritten with the new
pieces of information, it will look like this:

Dumg V p m
Dt

− ∇ =

Rearranging slightly, to have the acceleration term (the material derivative) on the left
side, gives as the equation of motion for a blob of fluid to be:

Dum V p mg
Dt

= − ∇ +

If calculation of a fluid is made, with the equation above, using a small finite number of
particles, there are going to be approximation errors – values from sampled particles
cannot fully account for values of unsampled ones. The solution is then to use a very
large number of particles, still finite but approaching infinity, to describe the fluid. This
is what is known as a continuum model and, according to Bridson [2015]: “has been
shown experimentally to be in extraordinarily close agreement with reality in a vast
range of scenarios”. The downside of it is that as the number of particles in the system
tends to infinity, the mass m and volume V of each particle tend to 0, thus making the
equations of motion meaningless. In order to avoid that, before taking the limit as the
number of particles goes to infinity, the momentum equation is divided by the volume:

m Du mp g
V Dt V

= −∇ +

Knowing that mass/volume equals density, m/V can be replaced with ρ (rho) to give:

Du p g
Dt

ρ ρ= −∇ +

Finally, the material derivative can be isolated by dividing by ρ , to yield the final form
of the momentum equation, one that will help with solving it numerically:

1Du p g

Dt ρ
= − ∇ +

 (1.5)

Figure 1 Eulerian and Lagrangian viewpoints

3.2 The Material Derivative

So far, the acceleration of the particle has been treated as just a regular derivative of
velocity. In a continuum model (e.g. fluid or deformable solid) however, there is more
than one way to track motion (Figure 1).

The first one is the Lagrangian method (named after the Italian mathematician Joseph-
Louis Lagrange) and it’s what drives particle systems: points in space have a position x
and a velocity u . The body of the fluid is represented with many such particles and,
knowing the active forces on them, allows the fluid to be advanced through time. This is
the approach that Smoothed Particle Hydrodynamics, for instance, takes.

 The other approach is the Eulerian one (named after Swiss mathematician Leonhard
Euler), which instead looks at fixed locations in space and measures the change in the
measurement of values (velocity, density, temperature or any other value) at those
locations to determine how the fluid flows through the analyzed region. While not
particularly intuitive, this approach has the advantage of allowing for easier
approximation of spatial derivatives (e.g. pressure, temperature).

Figure 2 The Material Derivative

What connects the two approaches is the Material Derivative, as it accounts for changes
from both Lagrangian and Eulerian viewpoints. Figure 2 shows on the left two
overlapping fields: a velocity field ()u x and a scalar field ()q x . A particle’s trajectory is
traced by the blue line. An analogy could be made that the particle moves through a
river described by u and that, between points A and C, it goes through a smoke cloud
(scattered from a nearby source) described by q. The smoke cloud is a scalar field, from

which a scalar measurement -smoke density for instance- can be obtained at different
points in space.

The problem at hand is just how fast q is changing not for a fixed point in space, x , but
rather for the particle whose position is given by ()x t as a function of time. Position P at
time t, given by ()x t is on the particle’s path and the particle has velocity ()u P at that
point. The maximum rate at which q could change from P is given by its gradient, q∇ ,
which is a vector pointing from the point P towards the region of q with the highest
increase in value (or the “steepest ascent”). Therefore how fast q is changing is
determined mainly by how much the velocity vector points in the same direction as the
gradient vector and of course by their magnitude (a very small velocity, even in the
same direction as the gradient, would still mean a slow change). So the easiest way to
see how much two vectors point in the same direction is to simply take their dot
product: u q⋅∇

 (also equivalent to cosu q θ∇

). This is half of the problem solved. Next,

changes in q that are Eulerian (so not a function of particles), like density variation due
to wind direction over time, /q t∂ ∂ , are also accounted for. The equation below is thus
obtained for the derivative of q at a moving particle’s position:

Dq q u q
Dt t

∂
= + ⋅∇
∂

 (1.6)

This is the Material Derivative and just to be thorough, below it is written in its
expanded form:

Dq q q q qu v w
Dt t x y z

∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂

 (1.7)

The last checked concept in this section is how the Material Derivative is applied to
vector functions, especially to velocity, which advects itself (advection is discussed in
Chapter 4). The idea is similar: combine Eulerian and Lagrangian parts to get a
compound derivative for every component of the vector:

/ /
/ /
/ /

Du Dt u t u u
Du u u u Dv Dt v t u v
Dt t

Dw Dt w t u w

∂ ∂ + ⋅∇
∂ = + ⋅∇ = = ∂ ∂ + ⋅∇ ∂

 ∂ ∂ + ⋅∇

 (1.8)

3.3 Fluid incompressibility

In the real world, all fluids manifest some level of compressibility, but for the most part
that goes unnoticed to the naked eye. No one can “see” sound waves for instance, which
are perturbations of air volume. Therefore as far as computer animation is concerned,
fluid compressibility can be ignored altogether and all fluid modeled incompressible.
When a fluid is incompressible, it does not change its volume and from a mathematical
standpoint that means that there is neither inflow nor outflow around the surface of the
fluid: it simply maintains whatever volume Ω it already has. To satisfy this, the normal
component of velocity around the fluid surface∂Ω has to be zero:

 ˆ() 0d volume u n
dt ∂Ω

Ω = ⋅ =∫∫

Using the divergence theorem, this integral can be changed to a volume integral:

 () 0d volume u
dt Ω

Ω = ∇⋅ =∫∫∫

which must be true for any Ω part of the fluid. And the only continuous function that
integrates to zero independent of the region of integration is zero itself, therefore the
integrand needs to be zero everywhere [Bridson 2015]:

 0u∇⋅ =

This is known as the incompressibility condition and it is the other part of the
incompressible Navier-Stokes equations (the first one being the momentum equation).
As will later be shown, in order to practically satisfy this condition, the velocity field of
the fluid needs to be divergence-free and to enforce that, the pressure from the
momentum equation is used.

3.4 Boundary conditions

Fluid must first of all not be allowed to go through the solid walls of its container and
second of all (most evident in the case of liquids), a boundary needs to exist between it
and its surrounding environment – this is what is known as the fluid’s free surface. For
a static solid boundary, velocity needs to be set to zero in the component perpendicular
to the surface of the solid (n̂ is the normal to the solid boundary):

 ˆ 0u n⋅ =

Tangential velocity along the surface of the solid, on the other hand, can either be zero
for viscous fluids (known as the no-slip condition) or left unaltered (the no-stick
condition) for inviscid fluids. In the current project the latter condition is used.

Finally, the free surface condition is handled by setting the pressure outside the fluid to
zero and not controlling the velocity in any way. In the implementation section it will be
shown how velocities from the fluid are extrapolated in the free space, but that is only
to aid with correctly interpolating velocities at the boundary of the fluid.

4 Solving the equations

Having the mathematical description of fluid motion in place, the next step in creating a
fluid simulation is to solve the equations, or to be more precise to approximate their
solutions in a manner that is as accurate as possible. This chapter details on how to do
this.

4.1 Splitting the fluid equations for numerical simulation

Splitting is a technique where components of a more complicated equation are solved in
turn, their effects then added up to form the complete solution. Apart from simplifying
the solving process, splitting allows for use of different numerical methods for different
terms, depending on what is better suited (for instance, gravity could very well use a
forward Euler scheme, since it is a constant force, whereas advection would most likely
require a more precise method, like Runge-Kutta 2nd order or higher). Therefore instead
of solving the Euler equations in one step, they are split into parts:

 Du
Dt

 (advection)

 u g
t

∂
=

∂

 (body forces)

 1 0,u p
t ρ

∂
+ ∇ =

∂

 such that 0u∇⋅ =
 (pressure/incompressibility)

With splitting, the high-level fluid algorithm becomes:

1. Start with an initial divergence-free velocity field 0u
2. For timestep n = 0,1,2,3….n

2.1 Determine a good timestep t to go from time nt to time 1nt +
2.2 Advect the velocity field 0u to get Au
2.3 Apply external forces g to Au to get Bu
2.4 Make Bu divergence free and enforce incompressibility

Figure 3 Basic fluid algorithm

4.2 The MAC grid

Before going ahead with actually solving the equations to bring the fluid to life, various
fluid properties and quantities need to be spatially discretized. At a basic level, velocity
and pressure need to be mapped onto 3D space (other values can be discretized as well,
but this project only concerns itself with the above two) and the way to do that is by
means of a three-dimensional grid.

Introduced by Harlow and Welch [1965], the Marker-And-Cell (MAC) method for
solving incompressible fluid flow involves creating a spatial grid onto which variables
are stored at different locations (a staggered arrangement). The reason for the
staggered arrangement is not immediately obvious, but as it will revealed, it greatly
simplifies calculating pressure to enforce incompressibility. Figure 4 illustrates a two-
dimensional MAC grid. As can be seen, at the center of each cell (i, j) a pressure ,i jp is
stored. Velocity, on the other hand, is not stored at the cell center, but rather split into
components which are then stored at the centers of cell faces, with every face being
shared by two neighbouring cells. The horizontal u-component is stored at the centers
of vertical faces (red) and the vertical v-component is stored at the centers of the
horizontal faces (green). The same thing happens in three dimensions (Figure 5).

Figure 4 The 2D staggered MAC grid. Original image by Bridson (2015).

The reason for this staggered arrangement of pressure and velocity is explained in
detail by [Bridson 2015], but the main idea is that it allows for accurate central
differences when calculating spatial derivatives, such as the derivative of u at point i:

 1/2 1/2i i

i

u uu
x x

+ −−∂ ≈ ∂

 (2.1)

The strange half indices simply indicate that the position of the velocity is not at the cell
centers, but rather halfway between cell centers. In actual code these velocities will of
course be referred to by integer indices, but it makes more intuitive sense of using half
indices when describing the algorithms and formulas.

A downside of using the staggered arrangement, however, is the added complexity
when interpolating velocity. Because no vectors of velocity are actually stored, three
interpolations are required (one per each component) every time the actual velocity
vector is requested at any known or arbitrary point inside the grid. For arbitrary points,
a bilinear (in 2D) or trilinear (3D) interpolation is always required, but at grid points
(where we store pressure) and cell face centers (where we store the components of
velocity themselves) averaging is enough:

 1/2, , 1/2, , , 1/2, , 1/2, , , 1/2 , , 1/2
, , , ,

2 2 2
i j k i j k i j k i j k i j k i j k

i j k

u u v v w w
u − + − + − ++ + +

=

 (2.2)

, 1/2, , 1/2, , , 1/2 , , 1/2

1, 1/2, 1, 1/2, 1, , 1/2 1, , 1/2
1/2, , 1/2, , , ,

4 4

i j k i j k i j k i j k

i j k i j k i j k i j k
i j k i j k

v v w w
v v w w

u u

− + − +

+ − + + + − + +
+ +

+ +
 + + + + =

 (2.3)

Figure 5 Cell of a 3D staggered MAC grid. Original image by Bridson (2015).

4.3 Advection

Advection describes how particles (or blobs) of fluid move with the velocity field u . The
advection equation states that quantities being advected do not change in the
Lagrangian viewpoint, but simply move around:

 0Dq q u q
Dt t

∂
= + ⋅∇ =
∂

 (2.4)

For example, if particles each had a value for temperature, that value would not change
on the particles as they were being moved around by the velocity field. Section 1.3.1 in
“Fluid Simulation for Computer Graphics” [Bridson 2015] analyzes a detailed example.
The approach taken to solve the advection is the Semi-Lagrangian method introduced
by Stam [1999], which is both easy to understand, fairly easy to implement and
unconditionally stable. The idea behind semi-Lagrangian advection is that instead of
using forward integration for the time derivative /q t∂ ∂ and an accurate central
difference for the spatial derivative u q⋅∇

 , a backwards particle trace is performed from
the point of interest.

Figure 6 The Semi-Lagrangian method

Looking at a practical example, Figure 6 depicts the staggered MAC grid with u and v
velocity components stored at cell faces. To find out the value of u at position Gx at the
new timestep, an imaginary particle (hence the “semi” in “semi-Lagrangian”) is traced
back one timestep using the reversed velocity field to its old position Px . There, an
interpolation between the two closest u-components is performed to find the old u
value, which is then directly assigned to Gx . A similar step is performed to find the value
of v at Gy and, for a three-dimensional grid, for w at Gz as well. The advection algorithm
for velocity in a 3D-scenario is outlined below:

For every cell (i, j, k):
 Loop over all velocity components (u, v, w):
 # routine for the u-component is outlined below

• Perform interpolation at the location Gx where the velocity component Gu
is stored to find the full velocity vector.

• Reverse the velocity vector.
• Integrate one timestep (example is forward Euler, but Runge-Kutta 2nd

order or higher is recommended to get accurate results):
P G Gx x u t= + ∆

• At Px , interpolate the velocity component Pu .
• Use the old value at the old position as the new value at the new position:

G Pu u=

Figure 7 Advection algorithm

4.4 Velocity extrapolation and boundary conditions

Given the way advection is performed, it is entirely possible for the imaginary particle
to be traced back to a position that lies outside the fluid boundaries, for instance inside
a solid wall or in the open air. In order for the velocity interpolation to be performed
correctly there, something needs to be done to extend the known fluid velocities into
areas where it is unknown. This is called velocity extrapolation.

The case where the particle ends up inside a solid is simpler. As per the reasoning
described in section 3.4, tangential velocities inside solids need to be set to something
that would not hinder movement of the fluid along the solid walls. The natural choice is
to simply mirror the velocity values inside the fluid, as shown in Figure 8. This means no
change in tangential velocity when interpolation at the boundary is performed
(interpolation between two identical values returns the same value).

Extrapolation of velocity from the fluid to the surrounding air is a bit more involved,
however will not be described here (a lot of algorithms for extrapolation can be found
with a quick internet search), but it basically involves averaging velocities starting from
the surface of the fluid outwards in the surrounding air.

Figure 8 Extrapolating fluid velocities to solid walls (the no-stick condition)

4.5 The pressure gradient

The velocity field obtained after advection and addition of any external forces is not
divergence-free, thus would not preserve fluid volume. To fix that, a new force needs to
be added into the field, one that would force it to become free of divergence, leading to
fluid incompressibility and simultaneously enforcing boundary conditions.

As described in section 3.1, high pressure areas push fluid away according to the
direction pointed to by the negative gradient of pressure. So for the actual update of
velocity at time n+1, as postulated by the momentum equation, the gradient of pressure
needs to be subtracted (can also be thought of as the negative gradient of pressure being
added if force addition makes more sense to the reader) from the intermediate velocity
field u generated by the advection step:

 1 1nu u t p
ρ

+ = − ∆ ∇
 (2.5)

with the resulting velocity field satisfying the incompressibility condition

 1 0nu +∇ ⋅ =

 (2.6)

and also solid wall boundary conditions 1 ˆ 0nu n+ ⋅ =

 and free surface condition that p = 0.

Now it becomes clear why a staggered arrangement of variables is used. When a

component ,p p
x y
∂ ∂
∂ ∂

 or p
z
∂
∂

 of the gradient of pressure p∇ needs to be subtracted from

the u, v or w-component of velocity u , there are two pressure values lined up perfectly
on either side of the velocity component. Therefore equation (2.5) can be approximated
using central differences for p∇ as:

1, , , ,1
1/2, , 1/2, ,

, 1, , ,1
, 1/2, , 1/2,

, , 1 , ,1
, , 1/2 , , 1/2

1

1

1

i j k i j kn
i j k i j k

i j k i j kn
i j k i j k

i j k i j kn
i j k i j k

p p
u u t

x
p p

v v t
x

p p
w w t

x

ρ

ρ

ρ

++
+ +

++
+ +

++
+ +

−
= − ∆

∆
−

= −∆
∆
−

= −∆
∆

 (2.7)

Not all the velocities in the grid need to be updated with the pressure gradient though.
Air regions which do not border any fluid, for example, do not need to be updated, since
preserving the air’s volume is not important. Velocity at solid walls also doesn’t need to
be updated with the pressure gradient, since it is set directly as per the boundary
conditions (zero for perpendicular flow, free for tangential flow). The only velocities
that need to be updated with the pressure gradient are those inside the fluid and those
at the fluid’s free surface (which border air cells). Refer to Figure 9 for clarification.

Figure 9 The voxelized fluid domain and velocities affected by the pressure gradient
update

4.6 The discrete divergence

So far only the pressure update has been accounted for (equation 2.5), but there is still
the incompressibility condition to be satisfied (equation 2.6). Luckily, given the way
velocity is stored on the grid, computing the divergence is really straightforward.

The divergence in three dimensions is:

u v wu
x y z
∂ ∂ ∂

∇ ⋅ = + +
∂ ∂ ∂

and approximating it for cell (i, j, k) using central finite differences results in:

 1/2, , 1/2, , , 1/2, , 1/2, , , 1/2 , , 1/2
, ,

i j k i j k i j k i j k i j k i j k
i j k

u u v v w w
u

x x x
+ − + − + −− − −

∇ ⋅ ≈ + +
∆ ∆ ∆

 (2.8)

As was the case with the pressure update, it is not required to calculate the divergence
for the entire grid, but only for cells marked as fluid, because it is not important if air or
solid objects change their volume or not.

4.7 The pressure equations

While the formula for how to update the velocity with the pressure gradient has been
established, something is obviously missing: the pressure! The pressure update only
describes how to update velocity, but gives no immediate clue on what the pressure
values should be. Indeed, it has been previously established that pressures in the air are
manually set to a constant value of zero (what is called a Dirichlet boundary condition).
And while not discussed until now, the pressure value inside solids, as stated by the
solid boundary condition, amounts to specifying the normal derivative of pressure

ˆ/p n∂ ∂ instead, rather than storing an explicit pressure value (what is called a
Neumann boundary condition). But that is of no concern, since velocities at fluid-solid
boundaries are manually set on each timestep anyway. So these two boundary
conditions aside, all the pressures inside the fluid are still unknown!

So what has to be figured out before the fluid can come to life in all its incompressible
glory is what values exactly does pressure need to have inside the fluid in order to
achieve incompressibility when it updates velocity. And the way to do solve this
problem is to take the two pieces of known information: how the pressure updates
velocity and what condition the resulting velocity needs to satisfy and combine them
together in a linear system of equations (one equation for each fluid cell) to solve for the
unknown value. More specifically, equation (2.7) will be substituted into equation (2.8)
like so:

1/2, , 1/2, , , 1/2, , 1/2, , , 1/2 , , 1/2
, ,

1, , , , , , 1, ,
1/2, , 1/2, ,

, 1, , ,
, 1/2,

0,

1 1 1

1

i j k i j k i j k i j k i j k i j k
i j k

i j k i j k i j k i j k
i j k i j k

i j k i j k
i j k

u u v v w w
u

x x x

p p p p
u t u t

x x x

p p
v t

x

ρ ρ

ρ

+ − + − + −

+ −
+ −

+
+

− − −
∇ ⋅ ≈ + + =

∆ ∆ ∆

 − −
− ∆ − −∆ + ∆ ∆ ∆

−
− ∆

∆

, , , 1,
, 1/2,

, , 1/2 , , , , , , 1
, , 1/2 , , 1/2

1

1 1 0

i j k i j k
i j k

i j k i j k i j k i j k
i j k i j k

p p
v t

x

p p p p
w t w t

x x

ρ

ρ ρ

−
−

+ −
+ −

−
− − ∆ + ∆

− −
− ∆ − −∆ = ∆ ∆

 (2.9)

for a fluid cell (i, j, k). Algebraically simplifying the equation a bit yields what is a

numerical approximation to the Poisson problem /t p uρ−∆ ∇⋅∇ = −∇⋅

:

1/2, , 1/2, ,

, , 1, , , 1, , , 1

1, , , 1, , , 1 , 1/2, , 1/2,
2

, , 1/2 , , 1/2

6
i j k i j k

i j k i j k i j k i j k

i j k i j k i j k i j k i j k

i j k i j k

u u
p p p p x

p p p v vt
x x

w w
x

ρ

+ −

+ + +

− − − + −

+ −

−
+ − − − ∆ − − − − ∆ = − + ∆ ∆ −

 ∆

 (2.10)

This is the general pressure equation formula for each FLUID cell in the grid. Note,
however, that if the cell is at the fluid’s boundary, there are already known values for
pressure (as dictated by the boundary conditions) that need to be substituted into
equation (2.9) in order to obtain a slightly different version of equation (2.10). Since
differences would be minimal, they are simply going to be mentioned without rewriting
the entire equation.

• For an air cell neighbour, the corresponding p is simply removed from the
equation

• For a solid cell neighbour, the corresponding p is removed from the equation, but
the integer coefficient in front of , ,i j kp is also decreased by 1

4.8 Finding and applying pressure

After equation (2.10) is established for every fluid cell in the grid, what results is a large
system of linear equations that needs to be solved for the unknown variables: the
pressures p. The system can be thought of a coefficient matrix, A, times a vector of all
the unknown pressures x, equal to a vector of negative divergences for each fluid cell, b:

 Ax b= (2.11)

There are many different methods of solving linear systems, but analyzing them was not
a priority for the project. Optimized linear system solvers are readily-available in many
C++ math libraries (more info in chapter 5), therefore implementing one was not
considered important. After the linear system solver returns the computed pressures
for each cell, the fluid velocities can be updated according to equation (2.7) and the
newly obtained velocity field 1nu + (which is divergence-free and abides by the boundary
conditions) can be used to advect the marker particles as the very last step of the entire
fluid calculation.

Before closing the chapter, an outline of the routine followed for the pressure update is
listed below. In code, all the pressure update steps are concatenated into a single
function, project():

• Calculate the negative divergence for each fluid cell (with modifications at solid
boundaries)

• Build the matrix of coefficients A, by looping over each FLUID cell and finding out
what type of cells (fluid, air or solid) are neighbouring them

• Solve the linear system Ax=b using a linear system solver, which returns the
vector of solved pressures x

• Compute the new velocity field 1nu + from u and the vector x using the pressure
gradient update formula (equation (2.7))

5 Implementation
Chapter 4 described the majority of algorithms and formulas used to create the fluid
simulator and for the most part, they are not going to be dissected again from a
programming standpoint, unless there is a notable or important difference between
theory and implementation. Instead, this chapter will mainly focus on describing the
high-level relations between the classes and how they work together.

5.1 Software architecture and class analysis

The class structure is very simple and does not shy away from favouring “generalist”
classes over very specialized ones. An approach where different sets of tasks are
delegated to many smaller, specialized classes can be extremely powerful, but then
again, so can having larger classes capable of managing many different types of
information. Either way, the primary goal was to have classes that made logical sense.

The container class of the program (not detailed in the class diagram) is an NGLScene
class inheriting from QOpenFLWindow. Its responsibilities are related almost
exclusively to OpenGL. It is the class through which VBOs and VAOs are created and
through which all OpenGL draw calls are made. Instead of having multiple classes each
implement their version of draw(), all the drawing is handled by NGLScene instead.
What data goes in the draw() function then is a generic geometry object defined by the
ShapeData class. ShapeData can create indexed or non-indexed vertex arrays to be sent
to OpenGL. It’s really not more complex than that, as it does not do any type of checking
on the generated data, but simply passes it down to draw(). All the classes that need to
output something to be drawn on the screen output ShapeData objects, from the grid
mesh to the particles. There is also a ShapeFactory class that can output various types
of primitive ShapeData objects (cell, sphere, plane), which can come quite in handy.

Moving on to the actual simulator classes, a decision was made early on to have a Grid
superclass that would act like a control hub for all the other classes. After all, most of the
fluid information is stored on the grid, so it made sense to bypass any “manager” classes
and simply provide the grid with direct control on the grounds that “if it belongs to the
grid, then the grid should handle it”. In turn, some of the classes that are connected to
the grid usually store a pointer to it through which they can query information about
any other connected classes.

First and foremost, the grid stores meta information about itself: dimensions in x, y and
z, number of cells, where the boundaries are. Then, it stores an array of cells that make
up the actual grid (what is meant through “array” is actually a std::vector, but to avoid
any terminology confusion, a convention is made to substitute the first term for the

latter for the remainder of the chapter). It also stores a lot of information about the
fluid: density, slip condition, but most importantly, all the velocity and pressure values
required in the fluid calculation. For intuitiveness purposes, it’s usually cells that these
values are retrieved through (associating a velocity with a cell is much more intuitive
that indexing directly into a long array), but the storage happens on the grid, not on the
cells. One advantage is that data is centralized and that memory is contiguous this way,
but no tests were made to check whether it affects performance in any way. Time
variables are stored on the grid as well: the id of the timer that controls the OpenGL
window update, the current time, the timestep and the frame duration. The timestep,
for instance is referenced by many other objects through the grid pointer they store.
Other things stored on the grid are an integrator to perform all the integration tasks and
the special objects used in solving linear systems of equations (required in the pressure
projection step): a sparse matrix, a dynamic vector and a conjugate gradient solver. All
objects come from the Eigen math library.

As for functionality, Grid does quite a few things, the most important being:

• Manages the cells it contains. Managing the cells is made easy by a series of handy
accessor functions that allow for multiple ways of reaching them: by index, by
spatial position or by grid coordinates.

• Executes all the steps of the simulation, from advection to velocity interpolation
to pressure projection. Even though some of the sub-tasks are performed by
other objects the grid keeps track of everything

• Creates geometry data to pass to OpenGL (cells, velocity fields, arbitrary vectors
and other such data needed especially in the visual debugging)

• Generally facilitates information exchange between objects connected to it.

The Cell class is much simpler than Grid, though judging by its size in the UML diagram,
one could think otherwise. Cell has a lot of getters and setters for its pressure and its
three velocity components (plus their duplicates, used in various places –e.g in the
backwards particle trace during the advection step), as well as accessors for its cell
neighbours. An important thing to point out is that the cell does not store neither
velocity nor pressure on itself, but rather keeps pointers into the arrays stored on the
grid. In other words, a cell is only aware of its position in space and within the grid and
does not actually hold the values it is associated with.

Emitter and Particle classes go hand in hand, obviously. They are rather simple classes
and their main duty is of course to deal with the marker particles. The emitter can extra
add particles into the scene and also integrates the particles in time when instructed to
do so by the grid. Quite a few methods and member variables on these two classes
ended up not actually being used, but are there for possible extensions in the future.

Finally, the last class that is of interest is the Integrator. This is a micro-class that has
only two methods, the most important of which, integrate(), is a pure virtual method.
Integrator is thus a parent class to four types of integrators used in the numerical
simulation of the fluid: Euler, RK2, RK3 and RK4. Having an abstract parent class
makes it easy to store a pointer to an Integrator object without having to worry what
type of integrator it is and also makes for easier changes in the code when switching
between integrator types. Two classes store pointers to an Integrator object: Grid and
Emitter, since they both need to integrate various quantities.

Overall, as has been previously said, the inner wirings between classes are quite simple
and they (hopefully) make for a not too difficult understanding of how data flows in the
program.

5.2 Programming challenges

One of the more difficult problems to solve was that of trilinear interpolation, not
because of its core algorithm, but because of the staggered arrangement of the velocity.
Three interpolations need to be made in order to get the full velocity vector and because
velocity components are stored in different places both spatially and programmatically
(arrays with different indices), it means that interpolating staggered values on a grid
can be quite a pain, as acknowledged by Cline[2013] and even by Bridson [2015].

Another somewhat difficult problem that is worth mentioning was in the pressure
calculation step, when calculating pressure coefficients for the linear system, because
the matrix that needed to be filled with values was sparse. Sparse matrices require a lot
of care, because it is very easy to put something in the wrong place. Using a debugging
function to print out the values in an easy to read manner would be a good thing to have
and could save a lot of headaches.

Finally, the velocity extrapolation function can very easily bring unwanted bugs
(sometimes hard to trace) if not performed in the right way. Again, using a debugging
tool (visual if possible) is recommended to make sure values are correct and to identify
problem areas.

5.3 Other implementation details

The project makes use of classes from four external libraries: NGL, glm, Eigen, and
OpenMP. Usage of NGL is limited to the use of a container class, NGLScene. Both glm and
Eigen are only used for only a handful of classes (vec3, respectively SparseMatrix,
ConjugateGradient and VectorXd), and OpenMP is used to parallelize bits of the code
that are suited to parallelization. Most of the rest of the code is based on equations and

pseudocode from the refrenced papers and books. Meaningful comments and overall
code tidiness were enforced as much as possible, to facilitate work on the project later
on.

5.4 UML diagram

Nothing important needs to be added here, apart from what has already been written in
the previous section. The UML diagram omits a few details to keep things as clear and as
simple as possible. Colour-coding is used to group together classes within the same
“family”.

6 Results

6.1 Functionality and performance

The simulation is basic. Liquid volume can be initialized at the start of the simulation by
means of creating a smaller or larger cluster of particles at the position of the emitter.
The simulation is then let to run on the fluid, creating fluid motion inside the grid
container. Additional particles can also be created during the simulation by pressing
down a hotkey.

A good feature of the program represents the ability to visualize velocities and other
elements of the grid simulation. Things like active fluid cells, average cell velocity, the
interpolated velocity field at arbitrary resolution and velocity components per cell face
can be toggled on and off. The benefits of having such tools when debugging are worth
the time invested into them.

Performance is acceptable, with low-res simulations running at high enough speeds to
be classed as interactive. During the limited testing, particle numbers as high as
~100000 have been used, with the expected big slowdowns, however the biggest
bottleneck is by far the grid resolution. Efforts have been made to parallelize code
wherever possible and while that does visibly speed up the program execution, any
notable advantage is negated by using a high resolution grid.

6.2 Limitations and future work

As is immediately evident from running the program, it has succeeded only in part. Not
enough testing has been done to check whether that is partly to blame on the
coarseness of the grid (only very low grids of maximum 12x12 cells have been used in
testing) or whether it is due actual errors in implementing the algorithms. In any case,
with the current settings the fluid does not behave like a believable liquid. There is a
copious amount of velocity dissipation, especially around the borders, thus the fluid,
even though it does not use the viscosity term and should technically be inviscid,
behaves more like a viscous fluid. A weird displacement effect can also be noticed at the
surface of the fluid, with particles manifesting (again) a viscous motion that prevents
them to flow back into the body of the fluid. Researching the problem in the available
academic literature hinted at the possibility of this being a side effect of sub-cell motion
(movement that is less than one cell high), which seems plausible, since the fluid settles
down within the height of only two grid cells.

Another encountered issue was the rapid decrease in performance as particles are
being added into the system during the simulation, but so far the exact reason for why
this is happening has not been determined.

7 Conclusion
This was only a partially successful project and it fell short even on the modest goals it
set at the beginning. That being said, valuable lessons have been learned and improving
and extending the program are definite goals for the future.

Bibliography

BRACKBILL, J.U. AND RUPPEL, H.M. 1986. FLIP: A method for adaptively zoned, particle-
in-cell calculations of fluid flows in two dimensions. In Journal of Computational Physics,
65(2), 314-343.

BRIDSON, R. 2015. Fluid Simulation for Computer Graphics. CRC Press.

CLINE, D., CARDON, D. AND EGBERT, P.K. 2013. Fluid flow for the rest of us: Tutorial of
the marker and cell method in computer graphics.

ENRIGHT, D., FEDKIW, R., FERZIGER, J. AND MITCHELL, I. 2002. A hybrid particle level
set method for improved interface capturing. In Journal of Computational physics,
183(1), 83-116.

EVANS, M.W., HARLOW, F.H. AND BROMBERG, E. 1957. The particle-in-cell method for
hydrodynamic calculations (No. LA-2139). LOS ALAMOS NATIONAL LAB NM.

FERSTL, F., ANDO, R., WOJTAN, C., WESTERMANN, R. AND THUEREY, N. 2016. Narrow
band FLIP for liquid simulations. In Computer Graphics Forum, Vol. 35, No. 2, 225-232.

FOSTER, N. AND FEDKIW, R. 2001. Practical animation of liquids. In Proceedings of the
28th annual conference on Computer graphics and interactive techniques, ACM, 23-30.

FOSTER, N. AND METAXAS, D. 1996. Realistic animation of liquids. In Graphical models
and image processing, 58(5), 471-483.

GINGOLD A. AND MONAGHAN J.J. 1977. Smoothed particle hydrodynamics-Theory and
application to non-spherical stars, In Mon. Not. Roy. Astron. Soc., vol. 181, 375–389.

GOURLAY, M.J., Fluid simulation for video games (part 1).
https://software.intel.com/en-us/articles/fluid-simulation-for-video-games-part-1.
Accessed: 2016-08-19.

HARLOW, F.H. AND WELCH, J.E. 1965. Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface. In Physics of fluids, 8(12), 2182.

HESS, J.L. AND SMITH, A.O. 1967. Calculation of potential flow about arbitrary bodies. In
Progress in Aerospace Sciences, 8, 1-138.
MÜLLER, M., CHARYPAR, D. AND GROSS, M. 2003. Particle-based fluid simulation for
interactive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics
symposium on Computer animation, Eurographics Association, 154-159.

OSHER, S. AND FEDKIW, R.P. 2001. Level set methods: an overview and some recent
results. In Journal of Computational physics, 169(2), 463-50.

PARENT, R. 2012. Computer Animation: Algorithms and Techniques. Morgan Kaufmann.

SIDEFX SOFTWARE. Flip solver.
http://archive.sidefx.com/docs/houdini15.5/nodes/dop/flipsolver.
Accessed: 2016-08-19.

STAM, J. 1999. Stable fluids. In Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., 121-
128.

STAM, J. AND FIUME, E. 1993. Turbulent wind fields for gaseous phenomena. In
Proceedings of the 20th annual conference on Computer graphics and interactive
techniques, ACM, 369-376.

STAM, J. AND FIUME, E. 1995. Depicting fire and other gaseous phenomena using
diffusion processes. In Proceedings of the 22nd Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’95, New York, NY, USA, 129–136

ZHU, Y. AND BRIDSON, R. 2005. Animating sand as a fluid. In ACM Transactions on
Graphics, Vol. 24, No. 3, ACM, 965-972.

