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Abstract 
 
This thesis describes the implementation of an Eulerian fluid simulator. A short 
overview and comparison of computational fluid dynamics (CFD) techniques for the 
entertainment industry is given, before proceeding to describe and detail the chosen 
technique for this project, from underlying mathematical concepts to high-level 
programming algorithms using C++ and OpenGL. The resulting simulator is analysed in 
terms of internal software architecture, performance, issues encountered during 
development and desired future improvements. 
 
Keywords: Computational Fluid Dynamics, CFD, Fluid simulation, Grid-based, Eulerian 
solver, Navier-Stokes equations. 
  



1 Introduction 
 
1.1 Motivation 
 
It is hard to understate the impact that Computational Fluid Dynamics (CFD) has within 
the greater domain of applied science and engineering -most people know about or at 
least expect physical phenomena being simulated in various fields of science-, but it’s 
easy to overlook its importance and involvement in computer animation, where it 
usually has a supporting role. After all, the general public will always consider computer 
animation to be first and foremost a form of artistic expression rather than a 
demonstration of technical prowess and to some extent, that is completely justifiable: 
computer animation is science servicing art and not the other way around. 
 
Fluid simulations are indispensable to the visual entertainment industry, as they allow 
creating physical phenomena (e.g. smoke, water, lava or any other flowing material) 
that would be impractical or downright impossible to produce through any other 
means. A great deal of effort has been made, especially in the last 20 years, in order to 
achieve ever-increasing levels of realism and results have often been impressive, to the 
point where simulation can be indistinguishable from reality. That being said, it is still a 
very much open area of research, even when only judging by recent SIGGRAPH 
presentations, with new methods and techniques being constantly invented or refined. 
 
1.2 Project goals 
 
From its earliest proposal stage, tackling this subject aimed first and foremost at a solid 
understanding of the underlying mathematical model employed in Eulerian fluid 
modelling, but also at solving a reasonably challenging software engineering problem. 
Considerable thought has been put not only in understanding how a fluid simulator’s 
parts work together, but also into how to build and connect them in a manner that is as 
efficient and as simple as possible. 
 
Speaking about simple, a word is in order about the desired extent of development (to 
be discussed in more detail in chapter 5): while having a feature-rich project is certainly 
something to aspire to, the most simple version of an Eulerian simulator proved very 
early on to be a difficult enough task for the author to justify setting that as the intended 
goal, with plans for future improvements and additions. There are no technical 
innovations brought forward, but rather tried-and-tested concepts, as described in 
research papers and books, are implemented. In that regard, the project can be thought 
of as an exercise in fully replicating already existing technology. The primary source of 
information during development was “Fluid Simulation for Computer Graphics (Second 

  



Edition)” [Bridson 2015], from which the majority of important algorithms and general 
structure of the simulator have been inspired. 
 
 

2 Related work 
 
Computational Fluid Dynamics (CFD) is a branch of fluid mechanics (the other one 
being fluid statics) that employs numerical analysis and other mathematical algorithms 
to resolve fluid flows. Historically, its purpose lay with helping to solve various 
engineering problems, from biology to astrophysics to any other field that required 
understanding and visualization of how fluid changes under certain conditions and how 
it affected objects which it came in contact with. Historically, CFD techniques only 
pertained to engineering applications, primarily in the aerospace industry. However, 
rapid advancements in computer technology towards the end of the last century led to 
CFD eventually being used in computer animation. 
 
Widely considered as the foremost figure in the development of CFD as a discipline and 
referenced by virtually all researchers of fluid dynamics for computer animation, is 
Francis H. Harlow, an American theoretical physicist who was the first one to use a 
computer to model fluid flow, at Los Angeles National Laboratory. As leader of the T3 
dynamics group from 1957 to the late 1960s, he pioneered many techniques, some of 
them still in direct or indirect use today.  Among them the PIC (Particle-In-Cell) method 
[Harlow et al. 1958], which three decades later would form the basis of FLIP (Fluid 
Implicit Particle) method [Brackbill and Rupel 1986], arguably the most widely used 
simulation method today and the MAC (Marker-And-Cell) method [Harlow et al. 1965], 
a simple, yet effective approach of tracking the fluid motion with marker particles –
something that the current project uses as well.  
 
These ideas made their way into the world of computer graphics particularly through 
the seminal work of Stam and Fiume [1993, 1995] for gaseous phenomena and Foster 
and Metaxas [1996] for liquid phenomena. The latter two’s work in particular marked 
the first time complex liquid phenomena were efficiently animated using physically-
based methods, with realism being provided through a finite difference approximation 
of the incompressible Navier-Stokes equations. From this moment on, preoccupation for 
CFD increased tremendously in the computer graphics community and by the end of the 
decade a large number of films started to utilize to their net advantage this new 
approach for creating believable dynamic effects. 
 
Another significant contribution to the development of fluid simulation for computer 
animation around this time was that of Jos Stam, with his paper “Stable Fluids” [1999], 



in which an unconditionally stable solver of the Navier-Stokes equations was presented, 
based on a semi-Lagrangian advection scheme (to be detailed in the next chapter) and 
implicit differentiation of viscosity, as opposed to the explicit and thus prone to 
numerical instability, method used earlier by Foster and Metaxas. Stam’s innovations 
made a reasonable compromise between speed and accuracy, essentially proving that 
fluid simulations could be efficient enough to run even on consumer-grade hardware. 
 
The early 2000s brought such accelerated development of fluid dynamics in computer 
graphics that films (and later, games) which didn’t use this new technology quickly 
became the exception rather than the rule. Interactive fluid solvers made their way to 
commercial 3D applications (e.g. Maya Fluid Effects, a solver for phenomena such as 
smoke, fire, clouds or explosions was included in the software starting with Maya 
version 4.5 in 2003), thus making it easier than ever before for the technology to 
expand into all areas of computer graphics. A close inspection of the nature of special 
effects used by films in the early 2000s leads to the conclusion that it was precisely at 
this time that practical dynamic effects were irrevocably superseded by their digital 
counterparts. 
 
A pivotal innovation in the new millennium was the introduction of the level set -a type 
of implicit surface that superseded the height field in accurately describing a liquid free 
surface [Foster and Fedkiw 2001; Osher and Fedkiw 2001], and a modification of it, the 
hybrid particle level set [Enright et al. 2002] -a mix between the original particle based 
method and the initial level set concept. Also, the late 2000s saw FLIP becoming an 
increasingly prevalent method, due to its reduced numerical dissipation when 
compared to pure Eulerian methods, as well as due to its good preservation of fine 
detail around the surface of the fluid. All high-end fluid solvers in active development 
today (Bifrost (ex-Naiad), Realflow, Houdini etc.) currently use FLIP in one form or 
another. Notable research work on FLIP has been done by Zhu and Bridson [2005] and 
very recently by Ferstl et al. [2016]. 
 
Apart from grid-based (Eulerian) methods previously described (technically some of 
them are hybrid methods, but they still rely on a spatial grid), there are also pure 
particle-based (Lagrangian) methods. This family of methods does not rely on spatial 
discretization, rather stores all the required information to perform the simulation on 
the particles. Their main advantage over grid based methods is the unbounded domain 
of simulation and decreased memory consumption, but coming at the cost of increased 
computation time (by comparison with FLIP, SPH requires 7 to 20 time steps or more 
each frame to stabilize [SideFX Software 2016]) and inability to accurately describe 
large bodies of water. By far the most popular of particle-based method is Smoothed 
Particle Hydrodynamics, or SPH, introduced in 1977 by Gingold and Monaghan for 
astrophysics applications and proposed as a viable solution for real-time and interactive 



applications by Müller et al. [2003]. The innovation of this system is that particles have 
a “smoothing length” over which properties are interpolated by a kernel function. This 
means properties of a particle (like pressure or temperature) can influence and be 
influenced by those of neighbouring particles. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 Governing equations 

 
Most fluid flow of interest to computer animation is governed by the incompressible 
Navier-Stokes equations, which are a set of partial differential equations: 
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where u  is the velocity of the fluid ( , , )u u v w=


,  the Greek letter ρ  is the density of the 
fluid, p  is the pressure that the fluid exerts on anything, g  is the sum of all external 
forces acting on the fluid (e.g. gravity) and the Greek letter ν  is the kinematic 
viscosity, a measure of how much the fluid resists deformation or how easy it conforms to 
its container. 
Now is a good time to mention that for many types of fluid, the viscosity term is not 
needed, so it is simply dropped from the equation. Dense fluids like honey or lava are 
highly dependent on viscosity, but for the majority of situations, viscosity does not play 
an important role. Water or air, for instance, have hardly any viscosity and are good 
examples of inviscid fluids (even though in real life they are not ideal inviscid fluids, 
their viscosity is low enough to be negligible in computer animation). In any case, due to 
the numerical methods used in approximating the solution to the fluid equations, some 
viscosity is unavoidably added into the simulation even when the viscosity term is 
dropped. The Navier-Stokes equations which are missing the viscosity term are called 
the Euler equations and they are in fact the ones that used in the current project: 
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3.1 The Momentum Equation 
 
Equation (1.1) is called the momentum equation and in the world of fluid dynamics it 
is the equivalent of Newton’s Second Law of motion: F ma=



 . What it describes then is 
how the fluid accelerates due to forces (internal and external) acting on it. It might not 
be immediately apparent, but the terms in the Euler equations exactly mirror those in 
Newton’s Second Law, as it’s about to be made a little more clear below. 
 
To help with intuition, a particle-driven fluid simulation is considered, where each 
particle represents a small blob of fluid with a mass m, a volume V and a velocity u  . As 



Newton’s Second Law states, the force F


on the particle is equal to its mass m times 
acceleration a : 
 
 F ma=



   (1.3) 
 
Acceleration is not known, but velocity on the particle is indeed known, and since 
acceleration is the derivative of velocity, the equation can be rewritten as: 
 

 
DuF m
Dt
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  (1.4) 

 

where 
Du
Dt



 is the notation used for the Material Derivative (to be dissected soon), but 

which for now can be safely thought of as just a standard derivative.  The next step is to 
consider what forces are acting on the particle. Naturally the first one to be considered 
is the force of gravity (important to remember this is the force of gravity, not to be 
confused with simple acceleration due to gravity, which does not involve mass): 
 

 gravityF mg=




 

 

Gravity is thus an external force, acting in equal amounts over each and every particle of 
the fluid and requires no further explanation. The somewhat more complex forces are 
those generated internally by the fluid on itself or, in other words, the forces which 
particles exert on their surrounding particles. There are two such forces: viscosity and 
pressure, but since viscosity has been previously dropped from the equation, only 
pressure is of importance. Thinking about it conceptually, fluid flows from high 
pressure areas to low pressure areas. To determine the force of pressure at a specific 
particle position, given that pressure is a spatial set of scalar values (a.k.a. a scalar field), 
the gradient of pressure, p∇  must be taken, resulting in a vector pointing in the 
direction of the “steepest ascent”, which is then negated, p−∇ , to point away from the 
region with high-pressure towards the region with low-pressure. To be perfectly clear, 

p∇  is just a collection of a scalar function’s partial derivatives into a vector: 
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To get the pressure force, the vector above then needs to be integrated over the volume 
of the particle blob, but as a simple approximation it can just be multiplied by V instead: 

 pressureF V p= − ∇


 

 
 At this stage it is still a bit unclear what the pressure’s role will be in the actual 
simulation, but understanding the core idea that high pressure areas push fluid away 
according to the direction pointed to by the negative gradient of pressure is extremely 
important (more on this is section 4.5). Now, if equation (1.4) is rewritten with the new 
pieces of information, it will look like this: 
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Rearranging slightly, to have the acceleration term (the material derivative) on the left 
side, gives as the equation of motion for a blob of fluid to be: 
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If calculation of a fluid is made, with the equation above, using a small finite number of 
particles, there are going to be approximation errors – values from sampled particles 
cannot fully account for values of unsampled ones. The solution is then to use a very 
large number of particles, still finite but approaching infinity, to describe the fluid. This 
is what is known as a continuum model and, according to Bridson [2015]: “has been 
shown experimentally to be in extraordinarily close agreement with reality in a vast 
range of scenarios”. The downside of it is that as the number of particles in the system 
tends to infinity, the mass m and volume V of each particle tend to 0, thus making the 
equations of motion meaningless. In order to avoid that, before taking the limit as the 
number of particles goes to infinity, the momentum equation is divided by the volume:  
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Knowing that mass/volume equals density, m/V can be replaced with ρ  (rho) to give: 
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Finally, the material derivative can be isolated by dividing by ρ  , to yield the final form 
of the momentum equation, one that will help with solving it numerically: 
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  (1.5) 

 

 

Figure 1 Eulerian and Lagrangian viewpoints 

 

 



3.2 The Material Derivative 

So far, the acceleration of the particle has been treated as just a regular derivative of 
velocity. In a continuum model (e.g. fluid or deformable solid) however, there is more 
than one way to track motion (Figure 1). 

The first one is the Lagrangian method (named after the Italian mathematician Joseph-
Louis Lagrange) and it’s what drives particle systems: points in space have a position x  
and a velocity u . The body of the fluid is represented with many such particles and, 
knowing the active forces on them, allows the fluid to be advanced through time. This is 
the approach that Smoothed Particle Hydrodynamics, for instance, takes. 

 The other approach is the Eulerian one (named after Swiss mathematician Leonhard 
Euler), which instead looks at fixed locations in space and measures the change in the 
measurement of values (velocity, density, temperature or any other value) at those 
locations to determine how the fluid flows through the analyzed region. While not 
particularly intuitive, this approach has the advantage of allowing for easier 
approximation of spatial derivatives (e.g. pressure, temperature). 

 

Figure 2 The Material Derivative 

 

What connects the two approaches is the Material Derivative, as it accounts for changes 
from both Lagrangian and Eulerian viewpoints. Figure 2 shows on the left two 
overlapping fields: a velocity field ( )u x   and a scalar field ( )q x . A particle’s trajectory is 
traced by the blue line. An analogy could be made that the particle moves through a 
river described by u  and that, between points A and C, it goes through a smoke cloud 
(scattered from a nearby source) described by q. The smoke cloud is a scalar field, from 



which a scalar measurement -smoke density for instance- can be obtained at different 
points in space. 

The problem at hand is just how fast q is changing not for a fixed point in space, x , but 
rather for the particle whose position is given by ( )x t  as a function of time. Position P at 
time t, given by ( )x t  is on the particle’s path and the particle has velocity ( )u P  at that 
point. The maximum rate at which q could change from P is given by its gradient, q∇ , 
which is a vector pointing from the point P towards the region of q with the highest 
increase in value (or the “steepest ascent”). Therefore how fast q is changing is 
determined mainly by how much the velocity vector points in the same direction as the 
gradient vector and of course by their magnitude (a very small velocity, even in the 
same direction as the gradient, would still mean a slow change). So the easiest way to 
see how much two vectors point in the same direction is to simply take their dot 
product: u q⋅∇

  (also equivalent to cosu q θ∇


). This is half of the problem solved. Next, 

changes in q that are Eulerian (so not a function of particles), like density variation due 
to wind direction over time, /q t∂ ∂ , are also accounted for. The equation below is thus 
obtained for the derivative of q at a moving particle’s position: 
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This is the Material Derivative and just to be thorough, below it is written in its 
expanded form: 
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The last checked concept in this section is how the Material Derivative is applied to 
vector functions, especially to velocity, which advects itself (advection is discussed in 
Chapter 4). The idea is similar: combine Eulerian and Lagrangian parts to get a 
compound derivative for every component of the vector: 
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3.3 Fluid incompressibility 
 

In the real world, all fluids manifest some level of compressibility, but for the most part 
that goes unnoticed to the naked eye. No one can “see” sound waves for instance, which 
are perturbations of air volume. Therefore as far as computer animation is concerned, 
fluid compressibility can be ignored altogether and all fluid modeled incompressible. 
When a fluid is incompressible, it does not change its volume and from a mathematical 
standpoint that means that there is neither inflow nor outflow around the surface of the 
fluid: it simply maintains whatever volume Ω  it already has. To satisfy this, the normal 
component of velocity around the fluid surface∂Ω  has to be zero: 

 ˆ( ) 0d volume u n
dt ∂Ω

Ω = ⋅ =∫∫
   

 

Using the divergence theorem, this integral can be changed to a volume integral: 

 

 ( ) 0d volume u
dt Ω

Ω = ∇⋅ =∫∫∫
   

 

which must be true for any Ω  part of the fluid. And the only continuous function that 
integrates to zero independent of the region of integration is zero itself, therefore the 
integrand needs to be zero everywhere [Bridson 2015]: 

 

 0u∇⋅ =
  

 

This is known as the incompressibility condition and it is the other part of the 
incompressible Navier-Stokes equations (the first one being the momentum equation). 
As will later be shown, in order to practically satisfy this condition, the velocity field of 
the fluid needs to be divergence-free and to enforce that, the pressure from the 
momentum equation is used. 

 

 
 
 
 



3.4 Boundary conditions 
 
Fluid must first of all not be allowed to go through the solid walls of its container and 
second of all (most evident in the case of liquids), a boundary needs to exist between it 
and its surrounding environment – this is what is known as the fluid’s free surface. For 
a static solid boundary, velocity needs to be set to zero in the component perpendicular 
to the surface of the solid ( n̂  is the normal to the solid boundary): 

 ˆ 0u n⋅ =
  

 

Tangential velocity along the surface of the solid, on the other hand, can either be zero 
for viscous fluids (known as the no-slip condition) or left unaltered (the no-stick 
condition) for inviscid fluids. In the current project the latter condition is used. 
 
Finally, the free surface condition is handled by setting the pressure outside the fluid to 
zero and not controlling the velocity in any way. In the implementation section it will be 
shown how velocities from the fluid are extrapolated in the free space, but that is only 
to aid with correctly interpolating velocities at the boundary of the fluid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4 Solving the equations 
 
Having the mathematical description of fluid motion in place, the next step in creating a 
fluid simulation is to solve the equations, or to be more precise to approximate their 
solutions in a manner that is as accurate as possible. This chapter details on how to do 
this.  

 
4.1 Splitting the fluid equations for numerical simulation 
 
Splitting is a technique where components of a more complicated equation are solved in 
turn, their effects then added up to form the complete solution. Apart from simplifying 
the solving process, splitting allows for use of different numerical methods for different 
terms, depending on what is better suited (for instance, gravity could very well use a 
forward Euler scheme, since it is a constant force, whereas advection would most likely 
require a more precise method, like Runge-Kutta 2nd order or higher). Therefore instead 
of solving the Euler equations in one step, they are split into parts: 
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Dt



 (advection) 

 

 u g
t

∂
=

∂



  (body forces) 

 

 1 0,u p
t ρ

∂
+ ∇ =

∂



 such that 0u∇⋅ =
  (pressure/incompressibility) 

 
 
With splitting, the high-level fluid algorithm becomes: 

1. Start with an initial divergence-free velocity field 0u   
2. For timestep n = 0,1,2,3….n 

2.1 Determine a good timestep t  to go from time nt  to time 1nt +  
2.2 Advect the velocity field 0u  to get Au   
2.3 Apply external forces g  to Au  to get Bu   
2.4 Make Bu  divergence free and enforce incompressibility 

 
Figure 3 Basic fluid algorithm 
 
 
 
 
 



 
4.2 The MAC grid 
 
Before going ahead with actually solving the equations to bring the fluid to life, various 
fluid properties and quantities need to be spatially discretized. At a basic level, velocity 
and pressure need to be mapped onto 3D space (other values can be discretized as well, 
but this project only concerns itself with the above two) and the way to do that is by 
means of a three-dimensional grid. 
 
Introduced by Harlow and Welch [1965], the Marker-And-Cell (MAC) method for 
solving incompressible fluid flow involves creating a spatial grid onto which variables 
are stored at different locations (a staggered arrangement). The reason for the 
staggered arrangement is not immediately obvious, but as it will revealed, it greatly 
simplifies calculating pressure to enforce incompressibility. Figure 4 illustrates a two-
dimensional MAC grid. As can be seen, at the center of each cell (i, j) a pressure ,i jp   is 
stored. Velocity, on the other hand, is not stored at the cell center, but rather split into 
components which are then stored at the centers of cell faces, with every face being 
shared by two neighbouring cells. The horizontal u-component is stored at the centers 
of vertical faces (red) and the vertical v-component is stored at the centers of the 
horizontal faces (green). The same thing happens in three dimensions (Figure 5). 
 

 
 
Figure 4 The 2D staggered MAC grid. Original image by Bridson (2015). 
 
 
The reason for this staggered arrangement of pressure and velocity is explained in 
detail by [Bridson 2015], but the main idea is that it allows for accurate central 
differences when calculating spatial derivatives, such as the derivative of u at point i: 
 

 1/2 1/2i i
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u uu
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  (2.1) 



 
The strange half indices simply indicate that the position of the velocity is not at the cell 
centers, but rather halfway between cell centers. In actual code these velocities will of 
course be referred to by integer indices, but it makes more intuitive sense of using half 
indices when describing the algorithms and formulas. 
 
A downside of using the staggered arrangement, however, is the added complexity 
when interpolating velocity. Because no vectors of velocity are actually stored, three 
interpolations are required (one per each component) every time the actual velocity 
vector is requested at any known or arbitrary point inside the grid. For arbitrary points, 
a bilinear (in 2D) or trilinear (3D) interpolation is always required, but at grid points 
(where we store pressure) and cell face centers (where we store the components of 
velocity themselves) averaging is enough: 
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Figure 5 Cell of a 3D staggered MAC grid. Original image by Bridson (2015). 
 
 
 
 



 
4.3 Advection 
 
Advection describes how particles (or blobs) of fluid move with the velocity field u . The 
advection equation states that quantities being advected do not change in the 
Lagrangian viewpoint, but simply move around: 
 

 0Dq q u q
Dt t

∂
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∂

   (2.4) 

 
For example, if particles each had a value for temperature, that value would not change 
on the particles as they were being moved around by the velocity field. Section 1.3.1 in 
“Fluid Simulation for Computer Graphics” [Bridson 2015] analyzes a detailed example.  
The approach taken to solve the advection is the Semi-Lagrangian method introduced 
by Stam [1999], which is both easy to understand, fairly easy to implement and 
unconditionally stable. The idea behind semi-Lagrangian advection is that instead of 
using forward integration for the time derivative /q t∂ ∂  and an accurate central 
difference for the spatial derivative u q⋅∇

 , a backwards particle trace is performed from 
the point of interest. 

 
Figure 6 The Semi-Lagrangian method 
 



 
Looking at a practical example, Figure 6 depicts the staggered MAC grid with u and v 
velocity components stored at cell faces. To find out the value of u at position Gx  at the 
new timestep, an imaginary particle (hence the “semi” in “semi-Lagrangian”) is traced 
back one timestep using the reversed velocity field to its old position Px . There, an 
interpolation between the two closest u-components is performed to find the old u 
value, which is then directly assigned to Gx . A similar step is performed to find the value 
of v at Gy  and, for a three-dimensional grid, for w at Gz  as well. The advection algorithm 
for velocity in a 3D-scenario is outlined below: 
 
 
For every cell (i, j, k): 
      Loop over all velocity components (u, v, w): 
                  # routine for the u-component is outlined below 

• Perform interpolation at the location Gx  where the velocity component Gu
is stored to find the full velocity vector. 

• Reverse the velocity vector. 
• Integrate one timestep (example is forward Euler, but Runge-Kutta 2nd 

order or higher is recommended to get accurate results): 
P G Gx x u t= + ∆
     

• At Px , interpolate the velocity component Pu . 
• Use the old value at the old position as the new value at the new position: 

G Pu u=   
 

Figure 7 Advection algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
4.4 Velocity extrapolation and boundary conditions 
 
Given the way advection is performed, it is entirely possible for the imaginary particle 
to be traced back to a position that lies outside the fluid boundaries, for instance inside 
a solid wall or in the open air. In order for the velocity interpolation to be performed 
correctly there, something needs to be done to extend the known fluid velocities into 
areas where it is unknown. This is called velocity extrapolation. 
 
The case where the particle ends up inside a solid is simpler. As per the reasoning 
described in section 3.4, tangential velocities inside solids need to be set to something 
that would not hinder movement of the fluid along the solid walls. The natural choice is 
to simply mirror the velocity values inside the fluid, as shown in Figure 8. This means no 
change in tangential velocity when interpolation at the boundary is performed 
(interpolation between two identical values returns the same value). 
 
Extrapolation of velocity from the fluid to the surrounding air is a bit more involved, 
however will not be described here (a lot of algorithms for extrapolation can be found 
with a quick internet search), but it basically involves averaging velocities starting from 
the surface of the fluid outwards in the surrounding air. 
 

 
Figure 8 Extrapolating fluid velocities to solid walls (the no-stick condition) 
 
 



 
4.5 The pressure gradient 
 
The velocity field obtained after advection and addition of any external forces is not 
divergence-free, thus would not preserve fluid volume. To fix that, a new force needs to 
be added into the field, one that would force it to become free of divergence, leading to 
fluid incompressibility and simultaneously enforcing boundary conditions. 
 
As described in section 3.1, high pressure areas push fluid away according to the 
direction pointed to by the negative gradient of pressure. So for the actual update of 
velocity at time n+1, as postulated by the momentum equation, the gradient of pressure 
needs to be subtracted (can also be thought of as the negative gradient of pressure being 
added if force addition makes more sense to the reader) from the intermediate velocity 
field u   generated by the advection step: 
 

 1 1nu u t p
ρ

+ = − ∆ ∇
    (2.5) 

with the resulting velocity field satisfying the incompressibility condition 
 
 1 0nu +∇ ⋅ =

   (2.6) 
 
and also solid wall boundary conditions 1 ˆ 0nu n+ ⋅ =

  and free surface condition that p = 0. 
 
Now it becomes clear why a staggered arrangement of variables is used. When a 

component ,p p
x y
∂ ∂
∂ ∂

 or p
z
∂
∂

 of the gradient of pressure p∇ needs to be subtracted from 

the u, v or w-component of velocity u  , there are two pressure values lined up perfectly 
on either side of the velocity component. Therefore equation (2.5) can be approximated 
using central differences for p∇  as: 
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  (2.7) 

 
Not all the velocities in the grid need to be updated with the pressure gradient though. 
Air regions which do not border any fluid, for example, do not need to be updated, since 
preserving the air’s volume is not important. Velocity at solid walls also doesn’t need to 
be updated with the pressure gradient, since it is set directly as per the boundary 
conditions (zero for perpendicular flow, free for tangential flow). The only velocities 
that need to be updated with the pressure gradient are those inside the fluid and those 
at the fluid’s free surface (which border air cells). Refer to Figure 9 for clarification. 
 
 



Figure 9 The voxelized fluid domain and velocities affected by the pressure gradient 
update 

 

4.6 The discrete divergence 

So far only the pressure update has been accounted for (equation 2.5), but there is still 
the incompressibility condition to be satisfied (equation 2.6). Luckily, given the way 
velocity is stored on the grid, computing the divergence is really straightforward. 
 
The divergence in three dimensions is: 

 
u v wu
x y z
∂ ∂ ∂

∇ ⋅ = + +
∂ ∂ ∂



  

and approximating it for cell (i, j, k) using central finite differences results in: 
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i j k

u u v v w w
u

x x x
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   (2.8) 

 
As was the case with the pressure update, it is not required to calculate the divergence 
for the entire grid, but only for cells marked as fluid, because it is not important if air or 
solid objects change their volume or not. 

 



4.7 The pressure equations 

While the formula for how to update the velocity with the pressure gradient has been 
established, something is obviously missing: the pressure! The pressure update only 
describes how to update velocity, but gives no immediate clue on what the pressure 
values should be. Indeed, it has been previously established that pressures in the air are 
manually set to a constant value of zero (what is called a Dirichlet boundary condition). 
And while not discussed until now, the pressure value inside solids, as stated by the 
solid boundary condition, amounts to specifying the normal derivative of pressure 

ˆ/p n∂ ∂  instead, rather than storing an explicit pressure value (what is called a 
Neumann boundary condition). But that is of no concern, since velocities at fluid-solid 
boundaries are manually set on each timestep anyway. So these two boundary 
conditions aside, all the pressures inside the fluid are still unknown! 
 
So what has to be figured out before the fluid can come to life in all its incompressible 
glory is what values exactly does pressure need to have inside the fluid in order to 
achieve incompressibility when it updates velocity. And the way to do solve this 
problem is to take the two pieces of known information: how the pressure updates 
velocity and what condition the resulting velocity needs to satisfy and combine them 
together in a linear system of equations (one equation for each fluid cell) to solve for the 
unknown value.  More specifically, equation (2.7) will be substituted into equation (2.8) 
like so: 
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  (2.9) 

 

for a fluid cell (i, j, k). Algebraically simplifying the equation a bit yields what is a 

numerical approximation to the Poisson problem /t p uρ−∆ ∇⋅∇ = −∇⋅


: 
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This is the general pressure equation formula for each FLUID cell in the grid. Note, 
however, that if the cell is at the fluid’s boundary, there are already known values for 
pressure (as dictated by the boundary conditions) that need to be substituted into 
equation (2.9) in order to obtain a slightly different version of equation (2.10). Since 
differences would be minimal, they are simply going to be mentioned without rewriting 
the entire equation. 

• For an air cell neighbour, the corresponding p is simply removed from the 
equation 

• For a solid cell neighbour, the corresponding p is removed from the equation, but 
the integer coefficient in front of , ,i j kp  is also decreased by 1 

 
 
4.8 Finding and applying pressure 

After equation (2.10) is established for every fluid cell in the grid, what results is a large 
system of linear equations that needs to be solved for the unknown variables: the 
pressures p. The system can be thought of a coefficient matrix, A, times a vector of all 
the unknown pressures x, equal to a vector of negative divergences for each fluid cell, b: 

 

 Ax b=   (2.11) 
 

There are many different methods of solving linear systems, but analyzing them was not 
a priority for the project. Optimized linear system solvers are readily-available in many 
C++ math libraries (more info in chapter 5), therefore implementing one was not 
considered important. After the linear system solver returns the computed pressures 
for each cell, the fluid velocities can be updated according to equation (2.7) and the 
newly obtained velocity field 1nu + (which is divergence-free and abides by the boundary 
conditions) can be used to advect the marker particles as the very last step of  the entire 
fluid calculation. 
 



Before closing the chapter, an outline of the routine followed for the pressure update is 
listed below. In code, all the pressure update steps are concatenated into a single 
function, project( ): 

• Calculate the negative divergence for each fluid cell (with modifications at solid 
boundaries) 

• Build the matrix of coefficients A, by looping over each FLUID cell and finding out 
what type of cells (fluid, air or solid) are neighbouring them 

• Solve the linear system Ax=b using a linear system solver, which returns the 
vector of solved pressures x 

• Compute the new velocity field 1nu +  from u   and the vector x using the pressure 
gradient update formula (equation (2.7)) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 Implementation 
Chapter 4 described the majority of algorithms and formulas used to create the fluid 
simulator and for the most part, they are not going to be dissected again from a 
programming standpoint, unless there is a notable or important difference between 
theory and implementation. Instead, this chapter will mainly focus on describing the 
high-level relations between the classes and how they work together. 
 
5.1 Software architecture and class analysis 

The class structure is very simple and does not shy away from favouring “generalist” 
classes over very specialized ones.  An approach where different sets of tasks are 
delegated to many smaller, specialized classes can be extremely powerful, but then 
again, so can having larger classes capable of managing many different types of 
information. Either way, the primary goal was to have classes that made logical sense. 
 
The container class of the program (not detailed in the class diagram) is an NGLScene 
class inheriting from QOpenFLWindow. Its responsibilities are related almost 
exclusively to OpenGL. It is the class through which VBOs and VAOs are created and 
through which all OpenGL draw calls are made. Instead of having multiple classes each 
implement their version of draw(), all the drawing is handled by NGLScene instead. 
What data goes in the draw() function then is a generic geometry object defined by the 
ShapeData class. ShapeData can create indexed or non-indexed vertex arrays to be sent 
to OpenGL. It’s really not more complex than that, as it does not do any type of checking 
on the generated data, but simply passes it down to draw(). All the classes that need to 
output something to be drawn on the screen output ShapeData objects, from the grid 
mesh to the particles. There is also a ShapeFactory class that can output various types 
of primitive ShapeData objects (cell, sphere, plane), which can come quite in handy. 
 
Moving on to the actual simulator classes, a decision was made early on to have a Grid 
superclass that would act like a control hub for all the other classes. After all, most of the 
fluid information is stored on the grid, so it made sense to bypass any “manager” classes 
and simply provide the grid with direct control on the grounds that “if it belongs to the 
grid, then the grid should handle it”. In turn, some of the classes that are connected to 
the grid usually store a pointer to it through which they can query information about 
any other connected classes.  
 
First and foremost, the grid stores meta information about itself: dimensions in x, y and 
z, number of cells, where the boundaries are. Then, it stores an array of cells that make 
up the actual grid (what is meant through “array” is actually a std::vector, but to avoid 
any terminology confusion, a convention is made to substitute the first term for the 



latter for the remainder of the chapter). It also stores a lot of information about the 
fluid: density, slip condition, but most importantly, all the velocity and pressure values 
required in the fluid calculation. For intuitiveness purposes, it’s usually cells that these 
values are retrieved through (associating a velocity with a cell is much more intuitive 
that indexing directly into a long array), but the storage happens on the grid, not on the 
cells. One advantage is that data is centralized and that memory is contiguous this way, 
but no tests were made to check whether it affects performance in any way. Time 
variables are stored on the grid as well: the id of the timer that controls the OpenGL 
window update, the current time, the timestep and the frame duration. The timestep, 
for instance is referenced by many other objects through the grid pointer they store. 
Other things stored on the grid are an integrator to perform all the integration tasks and 
the special objects used in solving linear systems of equations (required in the pressure 
projection step): a sparse matrix, a dynamic vector and a conjugate gradient solver. All 
objects come from the Eigen math library. 
 
As for functionality, Grid does quite a few things, the most important being: 

• Manages the cells it contains. Managing the cells is made easy by a series of handy 
accessor functions that allow for multiple ways of reaching them: by index, by 
spatial position or by grid coordinates. 

• Executes all the steps of the simulation, from advection to velocity interpolation 
to pressure projection. Even though some of the sub-tasks are performed by 
other objects the grid keeps track of everything 

• Creates geometry data to pass to OpenGL (cells, velocity fields, arbitrary vectors 
and other such data needed especially in the visual debugging) 

• Generally facilitates information exchange between objects connected to it. 
 
The Cell class is much simpler than Grid, though judging by its size in the UML diagram, 
one could think otherwise.  Cell has a lot of getters and setters for its pressure and its 
three velocity components (plus their duplicates, used in various places –e.g in the 
backwards particle trace during the advection step), as well as accessors for its cell 
neighbours. An important thing to point out is that the cell does not store neither 
velocity nor pressure on itself, but rather keeps pointers into the arrays stored on the 
grid. In other words, a cell is only aware of its position in space and within the grid and 
does not actually hold the values it is associated with. 
 
Emitter and Particle classes go hand in hand, obviously. They are rather simple classes 
and their main duty is of course to deal with the marker particles. The emitter can extra 
add particles into the scene and also integrates the particles in time when instructed to 
do so by the grid. Quite a few methods and member variables on these two classes 
ended up not actually being used, but are there for possible extensions in the future. 
 



Finally, the last class that is of interest is the Integrator. This is a micro-class that has 
only two methods, the most important of which, integrate(), is a pure virtual method. 
Integrator is thus a parent class to four types of integrators used in the numerical 
simulation of the fluid: Euler, RK2, RK3 and RK4. Having an abstract parent class 
makes it easy to store a pointer to an Integrator object without having to worry what 
type of integrator it is and also makes for easier changes in the code when switching 
between integrator types. Two classes store pointers to an Integrator object: Grid and 
Emitter, since they both need to integrate various quantities. 
 
Overall, as has been previously said, the inner wirings between classes are quite simple 
and they (hopefully) make for a not too difficult understanding of how data flows in the 
program. 
 
5.2 Programming challenges 
 
One of the more difficult problems to solve was that of trilinear interpolation, not 
because of its core algorithm, but because of the staggered arrangement of the velocity. 
Three interpolations need to be made in order to get the full velocity vector and because 
velocity components are stored in different places both spatially and programmatically 
(arrays with different indices), it means that interpolating staggered values on a grid 
can be quite a pain, as acknowledged by Cline[2013] and even by Bridson [2015]. 
 
Another somewhat difficult problem that is worth mentioning was in the pressure 
calculation step, when calculating pressure coefficients for the linear system, because 
the matrix that needed to be filled with values was sparse. Sparse matrices require a lot 
of care, because it is very easy to put something in the wrong place. Using a debugging 
function to print out the values in an easy to read manner would be a good thing to have 
and could save a lot of headaches. 
 
Finally, the velocity extrapolation function can very easily bring unwanted bugs 
(sometimes hard to trace) if not performed in the right way. Again, using a debugging 
tool (visual if possible) is recommended to make sure values are correct and to identify 
problem areas. 
 
5.3 Other implementation details 

The project makes use of classes from four external libraries: NGL, glm, Eigen, and 
OpenMP. Usage of NGL is limited to the use of a container class, NGLScene. Both glm and 
Eigen are only used for only a handful of classes (vec3, respectively SparseMatrix, 
ConjugateGradient and VectorXd), and OpenMP is used to parallelize bits of the code 
that are suited to parallelization. Most of the rest of the code is based on equations and 



pseudocode from the refrenced papers and books. Meaningful comments and overall 
code tidiness were enforced as much as possible, to facilitate work on the project later 
on. 
 
5.4 UML diagram 

Nothing important needs to be added here, apart from what has already been written in 
the previous section. The UML diagram omits a few details to keep things as clear and as 
simple as possible. Colour-coding is used to group together classes within the same 
“family”.  

 



 

6 Results 

6.1 Functionality and performance 

The simulation is basic. Liquid volume can be initialized at the start of the simulation by 
means of creating a smaller or larger cluster of particles at the position of the emitter. 
The simulation is then let to run on the fluid, creating fluid motion inside the grid 
container. Additional particles can also be created during the simulation by pressing 
down a hotkey. 
 
A good feature of the program represents the ability to visualize velocities and other 
elements of the grid simulation. Things like active fluid cells, average cell velocity, the 
interpolated velocity field at arbitrary resolution and velocity components per cell face 
can be toggled on and off. The benefits of having such tools when debugging are worth 
the time invested into them. 
 
Performance is acceptable, with low-res simulations running at high enough speeds to 
be classed as interactive. During the limited testing, particle numbers as high as 
~100000 have been used, with the expected big slowdowns, however the biggest 
bottleneck is by far the grid resolution. Efforts have been made to parallelize code 
wherever possible and while that does visibly speed up the program execution, any 
notable advantage is negated by using a high resolution grid. 
 
6.2 Limitations and future work 

As is immediately evident from running the program, it has succeeded only in part. Not 
enough testing has been done to check whether that is partly to blame on the 
coarseness of the grid (only very low grids of maximum 12x12 cells have been used in 
testing) or whether it is due actual errors in implementing the algorithms. In any case, 
with the current settings the fluid does not behave like a believable liquid. There is a 
copious amount of velocity dissipation, especially around the borders, thus the fluid, 
even though it does not use the viscosity term and should technically be inviscid, 
behaves more like a viscous fluid. A weird displacement effect can also be noticed at the 
surface of the fluid, with particles manifesting (again) a viscous motion that prevents 
them to flow back into the body of the fluid. Researching the problem in the available 
academic literature hinted at the possibility of this being a side effect of sub-cell motion 
(movement that is less than one cell high), which seems plausible, since the fluid settles 
down within the height of only two grid cells. 
 



Another encountered issue was the rapid decrease in performance as particles are 
being added into the system during the simulation, but so far the exact reason for why 
this is happening has not been determined. 

 

7 Conclusion 
This was only a partially successful project and it fell short even on the modest goals it 
set at the beginning. That being said, valuable lessons have been learned and improving 
and extending the program are definite goals for the future. 
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